首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Comparative vegetative anatomy and systematics of Vanilla (Orchidaceae)   总被引:1,自引:0,他引:1  
Vanilla is a pantropical genus of green-stemmed vines bearing clasping (aerial) and absorbing (terrestrial) roots. Most vanillas bear normal, thick foliage leaves; others produce fugacious bracts. Seventeen species, including both types were studied. Foliage leaves of Vanilla are glabrous, have abaxial, tetracytic stomatal apparatuses, and a homogeneous mesophyll. Species may or may not have a uniseriate hypodermis. Crystals occur in the foliar epidermises of some species, but all species have crystalliferous idioblasts with raphides in the mesophyll. Vascular bundles in leaves are collateral and occur in a single series alternating large and small. Sclerenchyma may or may not be associated with the vascular bundles. Scale leaves may be crescent or C-shaped and usually have abaxial stomatal apparatuses. A hypodermis may or may not be present; the mesophyll contains raphide bundles in idioblasts. Vascular bundles are collateral and occur in a single row sometimes aligned close to the adaxial surface. They may or may not be associated with sclerenchyma. Stems of leafy vanillas show a sclerenchyma band separating cortex from ground tissue; stems of leafless vanillas do not show a sclerenchyma band. Ground tissue of the stem may consist solely of assimilatory cells or mixed assimilatory and water-storage cells. In some species centrally located assimilatory cells are surrounded by layers of water-storage cells. A uniseriate hypodermis is present in all stems. Sclerenchyma may completely surround the scattered collateral vascular bundles, occur only on the phloem side, or be absent. Both aerial and terrestrial roots are notable for their uniseriate velamen the cell walls of which may be unmarked or ornamented with anticlinal strips. Exodermis is uniseriate; the cells vary from barely thickened to strongly thickened. Only the outer and radial walls are thickened. Cortical cells of aerial roots generally have chloroplasts that are lacking from the same tissue of terrestrial roots. Raphide bundles occur in thin-walled cortical idioblasts. Endodermis and pericycle are uniseriate; pericycle cells are all ?-thickened opposite the phloem. Cells of the endodermis are either ?- or ∪-thickened opposite the phloem. Vascular tissue may be embedded in thin- or thick-walled sclerenchyma or in parenchyma. Metaxylem cells are always wider in terrestrial than in aerial roots of the same species. Pith cells are generally parenchymatous but sclerotic in a few species.  相似文献   

2.
Stanhopeinae are a group of tropical American orchids characterized by euglossine bee pollination and lateral inflorescences stemming from the bases of pseudobulbs. Leaves are hypostomatal, and all stomatal configurations are tetracytic. Chlorenchyma is homogeneous and characterized by fibre bundles in adaxial/abaxial or adaxial/median/abaxial positions. Collateral vascular bundles occur in a single row and feature phloic and xylic sclerenchymatous caps and thin-walled bundle sheath cells. Fibre bundles and vascular sclerenchyma are accompanied by stegmata containing conical silica bodies. Pseudobulbs have thick-walled turbinate epidermal cells and ground tissue of smaller, living assimilatory cells and larger, dead water-storage cells. Fibre bundles are usually absent but occur in several genera. Collateral vascular bundles show phloic sclerenchyma, but xylic sclerenchyma occurs only in die larger vascular bundles. Phloic and xylic sclerenchyma are associated with stegmata containing conical silica bodies. Roots are velamentous. Velamen cell walls have fine, spiral thickenings. Exodermal cells are thin-walled. The cortex features scattered thick-walled cells and in some cases branched bars of secondary cell wall material. Endodermis is either u-or O-thickened, but pericycle is always O-thickened opposite the phloem. Vascular tissue consists of alternating strands of xylem and phloem surrounded by a matrix of thick-walled cells. Pith cells may be parenchymatous or sclerenchymatous.  相似文献   

3.
Catasetinae consist of five genera of pseudobulbous Orchidaceae of the Neotropics. Anatomy is characterized by sunken, three-celled foliar hairs, mostly tetracytic stomatal apparatuses, superficial stomata, homogeneous mesophyll, foliar fibre bundles, collateral vascular bundles in a single row, xylem and phloem sclerenchyma associated with vascular bundles in leaves, conical, and rough-surfaced silica bodies adjacent to vascular bundle sclerenchyma; epidermal cells of pseudobulbs with heavily thickened outer walls, pseudobulb ground tissue of assimilatory and water-storage cells, scattered vascular bundles in pseudobulbs, and sclerenchyma and stegmata associated only with phloem of pseudobulbs; roots with thin-walled velamen cells and tenuous spirals of cell wall material, distinctive epivelamen cells, thin-walled exodermal cells and vascular tissue embedded in parenchyma. Except for mucilaginous idioblasts that occur in Mormodes and Cycnoches , there are few outstanding anatomical differences among the five genera. Thus, there are few anatomical characteristics of phylogenetic value. The monophyly of Catasetinae is supported by the presence of sunken foliar hairs. Our results support a close relationship between Clowesia and Catasetum , and between Mormodes and Cycnoches. Among the outgroups Pteroglossaspis is especially distinctive.  相似文献   

4.
Leaves in Orchidinae are essentially glabrous; anticlinal walls of foliar epidermal cells arc basically straight-sided to curvilinear, and cells arc fundamentally polygonal on both surfaces; adaxial cells are larger than abaxial cells. Stomata arc anomocytic and usually only abaxial and superficial; substomatal chambers are small to moderate; outer and inner guard cell ledges are mostly small. There is no hypodermis nor are there fibre bundles. Mesophyll is homogeneous, chlorcnchyma cells arc thin-walled, and intercellular spaces numerous. Crystalliferous idioblasts abound. Vascular bundles are collateral, organized in a single series. and lack associated sclerenchyma. Bundle sheath cells are thin-walled and chlorophyllous. Stems are glabrous; stomata arc frequent in one species, lacking in others. Cortical cells are oval to circular, thick-walled, and interspersed with triangular intercellular spaces. Ground-tissue cells are circular, and triangular intercellular spaces are present. Vascular bundles arc collateral and scattered throughout the ground-tissue or are absent from the central ground-tissue. Epidermis in absorbing roots is one-layered and non-velamcntous. Exodcrmal cells are thin-walled and dead cell walls bear tenuous scalariform bars; some species lack an exodermis. Outer cortical cells are polygonal and lack intercellular spaces; middle layer cortical cells are rounded with triangular intercellular spaces; inner layer cells are polygonal and lack intercellular spaces. Endodermis and pericycle are thin-walled and one-layered. Vascular cylinder is mostly 7–9-arch with xylcm and phloem components alternating regularly; vascular tissue is embedded in parenchyma; pith cells are parenchymatous, polygonal, thin-walled and lack intercellular spaces. Root tubers generally bear a velamen of variable thickness; bulbous-based unicellular hairs frequently form a dense mat; exodermal cells are thin-walled; dead cells have scalariform bars, passage cells are sparse. Ground-tissue consists of rounded water-storage and assimilatory cells interspersed with triangular or quadrangular intercellular spaces; peripheral cells arc polygonal lacking intercellular spaces. Vascular tissue consists of monarch to pentarch meristeles distributed thoughout the ground-tissue each surrounded by a uniscriale endodermis of thin-walled cells. Thin roots ofPlalanthera exhibit a typical central cylinder surrounded by a homogeneous cortex uninterrupted by meristeles; thicker roots show a central vascular cylinder and cortex in which meristeles are also present; in globoid root tubers there is no central cylinder, and the ground-tissue is replete with scattered meristeles. Because the central vascular cylinder in Platanthera gives rise to branches (meristeles), these represent components of a single vascular system and are not separate stelar entities as implied by the use of the term ‘polystele’.  相似文献   

5.
Vegetative anatomy of subtribe Habenariinae (Orchidaceae)   总被引:1,自引:0,他引:1  
Leaves of Habenariinae are characterized by anomocytic stomatal apparatuses, homogeneous mesophyll, collateral vascular bundles in a single series, and thin-walled bundle sheath cells. There is no foliar sclerenchyma nor a hypodermis. Cauline cortex consists of thin-walled living cells among which are large and numerous intercellular spaces. The ground tissue is bordered externally by a layer of thick-walled living cells, except in Habenaria repens. Central ground tissue cells are living, and usually thin-walled surrounding intercellular spaces of various dimensions. These are conspicuously large in H. repens. Collateral vascular bundles are scattered across the ground tissue. Sclerenchyma is absent. Absorbing roots are generally velamentous, exodermal dead cells are diin-walled, and passage cells usually have a thickened outer wall. A regular vascular cylinder is present, and vascular tissue is embedded in parenchyma. Root tubers are velamentous, exodermal cells are usually thin-walled, and passage cells frequently have thickened outer walls. Vascular tissue of root tubers is organized into two classes: (1) those with a single vascular cylinder surrounded by a cortex and (2) those with a series of meristeles dispersed throughout the ground tissue. In group (1) cortex is homogeneous either with or without mucilage cells except in Stenoglattis where the cortex is heterogeneous, consisting of water-storage and assimilatory cells, and lacks mucilage cells. In group (2) the ground tissue consists of larger mucilage-containing cells and smaller assimilatory cells.  相似文献   

6.
The leaf and twig anatomy of 25 species of the genus Eriope were studied. The twig anatomy is very uniform apart from the level of formation of early layers of cork. Leaf anatomy shows considerable variation between the species, and this is correlated to some extent with the extreme habit range from trees to woody herbs. Characters of the lamina that show variation are: trichome type and frequency, cuticular markings, leaf dorsiventral or isobilateral, presence of adaxial stomata, presence of a hypodermis, number of layers of adaxial palisade mesophyll cells, occurrence of large bundles of phloem fibres at main veins, type of areolation and marginal venation. Petiole vasculature is simple and generally with either four distinct vascular bundles or two vascular arcs. The most xeromorphic species are usually woody herbs or sub-shrubs, and tend to have thick, isobilateral leaves with large bundles of phloem fibres and few hairs, or strongly dorsiventral leaves with a hypodermis and stomata in deep abaxial hair-lined depressions. The correlation of xeromorphic characters with environmental conditions is discussed. Leaf anatomy is of limited value in elucidating relationships within the genus.  相似文献   

7.
Delimitation of genera and species in Bromeliaceae is often problematic, for example in the Neoregelia bahiana complex which is distributed throughout the rocky fields of the Espinhaço Range, Brazil. Considering that the anatomical characterisation of different organs is potentially important for taxonomic and ecological interpretation of this complex, we analysed roots, stems (stolon), leaves, inflorescence axes (peduncle) and pedicels in individuals from different populations. In all the studied individuals, the roots are composed of velamen, a heterogeneous cortex, and a polyarch vascular cylinder with sclerenchymatous pith. The stolon features a parenchymatous cortex and collateral vascular bundles randomly distributed in the vascular cylinder. This organ may increase in diameter by the formation of new vascular bundles and a multi‐layered cork. The leaf blade has epidermal cells with U‐shaped thickened walls and peltate scales occur on the adaxial surface. The mesophyll consists of mechanical and water‐storage hypodermis and a heterogeneous chlorenchyma. The inflorescence axis and the pedicel have a parenchymatous cortex and vascular bundles randomly distributed in an aerenchyma. Some variable leaf characters, such as presence of air lacunae in the mesophyll, are related to the size of the individuals and were interpreted as phenotypic variations related mainly to sunlight incidence. In contrast, leaf characters such as lamina shape, distribution of the peltate scales, and number of cell layers forming the water‐storage hypodermis distinguish the populations of the Serra do Cabral and one population of the Diamantina (Minas Gerais) from the remaining studied populations, suggesting the existence of more than one taxon.  相似文献   

8.
采用石蜡切片法对豆蔻属12个种的叶片横切面结构进行比较解剖学研究。结果显示:豆蔻属植物叶片表皮层由1层表皮细胞组成,在无下皮层的种中,近轴面的表皮细胞通常体积较大,而在有下皮层的种中,表皮层通常较薄,细胞壁增厚;下皮层的结构具有多样性;叶肉中栅栏组织通常1~2层,海绵组织2~6层细胞,常含丹宁,所观察的大部分种含有方晶或砂晶;中脉韧皮部极端维管束形态多样,维管束系统II通常缺失,未发现同时具有4个系统的种。此外,对叶缘的形态特点进行了概括性描述,并结合前人的研究资料讨论了叶解剖结构的系统学意义。  相似文献   

9.
This study aims to determine whether morphoanatomical characters of the leaves of the species of Chamaecrista sect. Absus subsection Baseophyllum could be used to support an up-ranking of C. cytisoides varieties to the species level as previously defined by molecular studies. The significance of anatomical adaptive strategies to arid environments is also discussed. Standard light microscopy techniques and histochemical tests were used for both morphoanatomical and histochemical characterization of the leaves. All the species studied share a single-layered epidermis, actinodromous–camptodromous–brochidodromous type of venation, vascular bundles surrounded by layers of fibers bounded externally by a sheath of cells containing solitary crystals, enlarged tracheids at the vein endings, vascular petiole/rachis tissue with a parenchymatous pith, accessory vascular bundles, mucilage idioblasts and hypodermis in the mesophyll, colleters, and non-secretory trichomes. The position and type of stomata, type of mesophyll, number of palisade and spongy parenchyma layers, position of mucilage idioblasts in the mesophyll, and the number of accessory vascular bundles of petiole/rachis provided useful characters for discriminating the eight species of the subsect. Baseophyllum. Histochemical tests reveal the presence of total polysaccharides, pectins, mucilage and phenolic compounds in the idioblasts. Other xeromorphic characters such as thickened outer periclinal cell walls, compact mesophyll, mucilage idioblasts and hypodermis in the mesophyll may help enable the studied species to survive in exposed sunny areas.  相似文献   

10.
Changes in stem anatomy with radial position and height were studied for the arborescent palms Welfia georgii, Iriartea gigantea, Socratea durissima, Euterpe macrospadix, Prestoea decurrens, and Cryosophila albida. Vascular bundles are concentrated toward the stem periphery and peripheral bundles contain more fibers than central bundles. Expansion and cell wall thickening of fibers within vascular bundles continues throughout the life of a palm, even in the oldest tissue. Within individual vascular bundles, the fibers nearest the phloem expand first and fiber cell walls become heavily thickened. A front of expanding fibers moves outward from the phloem until all fibers within a vascular bundle are fully expanded and have thick cell walls. Peripheral vascular bundles differentiate first and inner bundles later. In the stem beneath the crown, vascular bundles and ground tissue cells show little or no size increase, but marked cell wall thickening during development for Welfia georgii. Beneath the crown, diameters of peripheral vascular bundles increase more than twofold for Iriartea gigantea, while diameters of central bundles do not increase. In Iriartea stems, ground tissue cells at the periphery elongate to accommodate expanding vascular bundles and cell walls become thickened to a lesser degree than in fibers; central ground tissue cells elongate markedly, but cell walls do not become thickened; and large lacunae form between central parenchyma cells. For Iriartea, Socratea, and Euterpe, sustained cell expansion results in limited, but significant increases in stem diameter. For all species, sustained cell wall thickening results in dramatic increases in stem stiffness and strength.  相似文献   

11.
We compared the anatomical characteristics of vegetative organs, peduncle and mycorrhizal morphology of the two known species of Sirhookera (Epidendroideae, Orchidaceae) to identify anatomical markers for identification and the ecological adaptations of these species. The leaves are hypostomatic bearing tetracytic stomata and the walls of subsidiary cells are smooth in Sirhookera lanceolata and undulate in Sirhookera latifolia. On the adaxial and abaxial surfaces the leaves are covered by a thick cuticle. The hypodermis is dimorphic and present on both sides of the leaf; chlorenchyma is homogenous and the vascular bundles are collateral. The rhizome of Sirhookera possesses a single-layered epidermis, thick cuticle, thin-walled parenchymatous ground tissue containing starch grains and scattered collateral vascular bundles. A thick-walled sclerenchymatous band separates the cortex from the parenchymatous ground tissue comprising of banded cells in the peduncle. Starch grains are present in the ground tissue of the S. latifolia peduncle. The roots consist of the velamen, ∩-thickened exodermis, thin-walled cortex consisting of water-storage cells, O-thickened endodermis and a vascular cylinder with parenchymatous pith. Starch grains are present in the root cortical cells of S. lanceolata but absent in S. latifolia. Fungal pelotons that aids in nutrient acquisition were observed in the root cortical region of both species. The study revealed significant differences between the anatomical characteristics of the two species and that most of the anatomical features of Sirhookera relate to their ecological adaptations.  相似文献   

12.
Using epifluorescent and histochemical techniques, we examined anatomical differences in the shoot organs of Typha latifolia, T. angustifolia and T. glauca. The leaf lamina of T. latifolia and T. glauca had enlarged epidermal cells and a thickened cuticle above the subepidermal vascular bundles; that of T. angustifolia lacked these characteristics. Leaf sheaths were similar among the species and all lacked the epidermal thickenings found in the lamina. The fertile stems had typical scattered vascular bundles with a band of fibres that was most prominent in T. glauca. The sterile stems were only 1 cm in length and contained a multiseriate hypodermis and a uniseriate endodermis over part of their length. The rhizomes were similar except for a pronounced band of fibres surrounding the central core in T. angustifolia. The rhizome was also characterized by an outer cortical region with a large multiseriate hypodermis/exodermis and a uniseriate endodermis with Casparian bands, suberin lamellae and secondarily thickened walls.  相似文献   

13.
Three fragments of fascicles of a possible five-needle pine are described from the Upper Cretaceous Yezo Group (Santonian/Senonian) of Hokkaido. Specimens from the Omakizawa, Oyubari, Yubari City, the Koyanozawa, Ikushumbetsu, Mikasa City, and the Sankebetsugawa, Haboro are preserved in calcium carbonate nodules containing abundant ammonites. Leaves borne in apparent fascicles of five measure 0.7–0.8 mm in radial and 0.8–1.0 mm in tangential diam and are represented by short fragments of isolated needles. Thick-walled epidermal cells on these amphistomatic leaves resemble the underlying uniform hypodermis. Two external resin canals are situated near the lateral corners toward the adaxial surface. Only slightly plicate mesophyll cells in a layer one to two cells thick border on an elliptical endodermis with thickened outer cell walls. Two to three layers of transfusion tissue surround the double vascular strand. Two vascular bundles are separated by one cell layer of sclerenchyma fibers. Small patches of abaxial and adaxial sclerenchyma fibers have also been observed. Leaves most closely resemble those of Pinus leiophylla Schl. et Cham. Subgenus Pinus, Section Pinea, Subsection Leiophyllae and P. montezumae Lamb. Subgenus Pinus, Section Pinus, Subsection Ponderosae and are described as a new species P. hokkaidoensis sp. nov. Stockey and Ueda. Close anatomical comparisons are made with this leaf and previously described permineralized Upper Cretaceous pine needles from Hokkaido and eastern North America.  相似文献   

14.
胡杨雌雄株叶片的比较解剖学研究   总被引:1,自引:0,他引:1  
应用石蜡切片法对胡杨(Populus euphratica Oliv.)雌、雄株叶片进行比较解剖研究,结果表明:(1)胡杨雌、雄株叶片都由表皮、叶肉与叶脉构成,表皮由2层细胞构成复表皮;上、下表皮内均分化出了2~3层栅栏组织细胞,栅栏组织之间有少量海绵组织细胞;主脉维管束通常1个,由木质部、韧皮部、少量形成层及类似禾本...  相似文献   

15.
BACKGROUND AND AIMS: The two closely related subtribes Bifrenariinae Dressler and Maxillariinae Benth. are easily distinguished on morphological grounds. Recently, however, molecular techniques have supported the inclusion of Bifrenariinae within a more broadly defined Maxillariinae. The present paper describes the diverse labellar micromorphology found amongst representatives of Bifrenariinae (Bifrenaria Lindl., Rudolfiella Hoehne, Teuscheria Garay and Xylobium Lindl.) and compares it with that found in Maxillaria Pabst & Dungs and Mormolyca Fenzl (Maxillariinae). METHODS: The labella of 35 specimens representing 22 species of Bifrenariinae were examined by means of light microscopy and scanning electron microscopy and their micromorphology compared with that of Maxillaria sensu stricto and Mormolyca spp. The labellar epidermis of representatives of Bifrenaria, Xylobium and Mormolyca was tested for protein, starch and lipids in order to ascertain whether this tissue is involved in the rewarding of pollinators. KEY RESULTS AND CONCLUSIONS: The labella of Bifrenaria spp. and Mormolyca spp. are densely pubescent but those of Xylobium, Teuscheria and Rudolfiella are generally papillose. However, whereas the trichomes of Bifrenaria and Mormolyca are unicellular, those found in the other three genera are multicellular. Hitherto, no unicellular trichomes have been described for Maxillaria, although the labella of a number of species secrete a viscid substance or bear moniliform, pseudopollen-producing hairs. Moniliform hairs and secretory material also occur in certain species of Xylobium and Teuscheria and these genera, together with Maxillaria, are thought to be pollinated by stingless bees (Meliponini). Differences in the labellar micromorphology of Bifrenaria and Mormolyca are perhaps related to Euglossine- and/ or bumble bee-mediated pollination and pseudocopulation, respectively. Although Xylobium and Teuscheria share a number of labellar features with Maxillaria sensu stricto, this does not necessarily reflect taxonomic relationships but may be indicative of convergence in response to similar pollinator pressures.  相似文献   

16.
The leaf anatomy of the subtribe Hyptidinae (Labiatae), which consists of four small genera and the largr genus Hyplis , is dercribed. The leaves may be dorsiventral or isobilateral. Variable characters of the lainina include: frequency and forms of trichomes, cuticular markings, presence of adaxial stoinata, thickness of leaf, thickness of adaxial epidermis, presence of a hypodermis, occurrence of sclcrified tissues (especially sclerified bundle sheath extensions, phloem and xylem fibres), mesophyll structure and venation pattern. Petiole vasculature varies from simple to complex, sometimes with medullary traces present. Most of the variable characters are related to xeromorphy and are tax-onomically useful within the framework of the present classification.  相似文献   

17.
The leaf of Pyrossia longifolia (Burm.) Morton, an epiphytic fern known to exhibit CAM, was examined by light and electron microscopy. The relatively thick leaf contains a single-layered epidermis, “water-storage” tissue, and a reticulate vascular system embedded in mesophyll tissue not differentiated into palisade and spongy layers. Mesophyll is composed of large, slightly elongate cells each with a thin, parietal layer of cytoplasm and a large central vacuole. The chloroplast-microbody ratio in mesophyll cells indicates that Pyrossia may be a high photorespirer and thus similar in that sense to C3 plants. Mesophyll is separated from the vascular tissue by a tightly-arranged layer of endodermal cells with Casparian strips. The inner layer of mesophyll cells and the endodermal cells lack suberin lamellae. The collateral veins contain sieve elements, tracheary elements, pericycle and vascular parenchyma cells, the latter conspicuously larger than the sieve elements. The vascular parenchyma is the only cell type in the leaf which contains plastids with a peripheral reticulum. The parenchymatic elements of the leaf are connected by plasmodesmata, all of which lack neck constrictions and sphincters, or sphincter-like structures. The connections between sieve elements and adjacent parenchymatic elements are pore-plasmodesmata characterized by prominent wall thickenings on the parenchymatic-element side of the wall. The distribution and relative frequencies of plasmodesmata between the various cell types of the leaf indicate photoassimilates may move either symplastically or by a combination of symplast and apoplast from the mesophyll to the site of phloem loading in the veins.  相似文献   

18.
Comparative leaf anatomy of Salix species and hybrids   总被引:1,自引:0,他引:1  
Epidermal features, mesophyll differentiation and calcium oxalate characteristics of 19 species and 12 hybrids of Salix are described. The species and hybrids can be distinguished by the presence or absence of the following epidermal features: striated cuticle; stomata; covering trichomes; beaded anticlinal walls, and diosmin-like njstals. In or near marginal teeth, glandular trichomes are present in all cases. The leaf veins of all specimens examined have calcium oxalate prism sheaths and, with the exception of S. herbacea , cluster crystals in some cells of the mesophyll. Most sprcies studied in the subgenus Salix show: both adaxial and abaxial stomata; striated cuticle metopllyll of palisade cells, with little or no spongy mesophyll, but with a well-defined hypodermis, and absence of thick-walled, sinuous trichomes. Characteristic features of the subgenus Caprisalix are: abaxial stomata only; epidermal crystals; smooth cuticle; mesophyll diflerentiated into palisade cells and spongy mesophyll and without a hypodermis, and trichomes more numerous and varied than those of the subgenus Salix . Leaves of the two species of the subgenus Chaemelia examined and those of S. lapponum , have predominantly anomocytic stomata, whereas all the other leaves studied have predominantly paracytic stomata. The anatomical features described, in conjunction with the morphologiral characters, enable the species and hybrids of Salix studied to be autheenticated.  相似文献   

19.
BACKGROUND AND AIMS: Bamboo culms have excellent physical and mechanical properties, which mainly depend on their fibre content and anatomical structure. One of the features which is known to contribute to the high tensile strength in bamboo is the multilayered structure of the fibre cell wall. The aim of this study was to characterize the development of the layered structure in fibre cell walls of developing and maturing culms of Dendrocalamus asper. METHODS: Cell wall development patterns were investigated in phloem fibre caps of vascular bundles in the inner culm wall areas of Dendrocalamus asper of three different age classes (<6 months old, 1 year old, 3 years old). A combination of light microscopy and image analysis techniques were employed to measure cell wall thickness and to determine number of cell wall layers, as well as to describe the layering structure of fibre walls. Two-dimensional maps showing the distribution pattern of fibres according to the number of cell wall layers were produced. KEY RESULTS: The cell walls of fibres in phloem fibre caps located in the inner part of the culm wall of D. asper developed rapidly during the first year of growth. Six different fibre types could be distinguished based upon their cell wall layering and all were already present in the young, 1-year-old culm. In the mature stage (3 years of age) the multilayering was independent of the cell wall thickness and even the thinner-walled fibres could have a large number of wall layers. The multilayered nature of cell wall structure varied considerably between individual cells and was not exclusively related to the cell wall thickness. Nevertheless, fibres at the periphery of the fibre bundles and immediately adjacent to the phloem elements exhibited a consistent and high degree of layering in their cell walls. CONCLUSIONS: The multilayered structure of fibre cell walls was formed mainly during the first year of growth by the deposition of new wall layers of variable thickness, resulting in a high degree of heterogeneity in the layering patterns amongst individual fibres. A degree of 'order' in the distribution of multilayered fibres within the caps does exist, however, with multilayered cell walls common in fibres adjacent to phloem elements and around the edge of the fibre cap. These findings confirm the observations, primarily in Phyllostachys viridi-glaucescens. The layering structure was not found to be specifically related to the thickness of the cell wall.  相似文献   

20.
Micromorphological features of the leaf epidermis and the inner structure of leaf tissues of eight arborescent taxa of the genus Dracaena were analysed using light and scanning electron microscopy. The plants are xeromorphic or mesomorphic. Their leaves are isobilateral and amphistomatic, and the stomata are anomocytic and tetracytic. The mesophyll in all the species is divided into an outer chlorenchyma and a central region with colourless water-storage cells, chlorophyll cells and vascular bundles. Water-storage cells have wall bands and reticulate thickenings on the walls. The article describes and illustrates several new quantitative and qualitative leaf characters of the dragon tree group. Our findings can be used to identify the dragon tree group leaves, while the shape of epidermal cells and stomata types may be useful in the identification and classification of fragments of fossil leaves. We conclude that D. ombet and D. schizantha are not two distinct species, but should be treated as subspecies of D. ombet. Leaf characters, especially stomata depth on adaxial epidermis, height of adaxial epidermal cells and the presence and thickness of hypodermal fibre bundles markedly differ between geographical groups: Macaronesian species (D. draco and D. tamaranae), the species found in East Africa and Arabian Peninsula (D. ombet subsp. ombet, D. ombet subsp. schizantha, D. serrulata and D. cinnabari) and Southeast Asian species (D. kaweesakii and D. jayniana).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号