首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Stanhopeinae are a group of tropical American orchids characterized by euglossine bee pollination and lateral inflorescences stemming from the bases of pseudobulbs. Leaves are hypostomatal, and all stomatal configurations are tetracytic. Chlorenchyma is homogeneous and characterized by fibre bundles in adaxial/abaxial or adaxial/median/abaxial positions. Collateral vascular bundles occur in a single row and feature phloic and xylic sclerenchymatous caps and thin-walled bundle sheath cells. Fibre bundles and vascular sclerenchyma are accompanied by stegmata containing conical silica bodies. Pseudobulbs have thick-walled turbinate epidermal cells and ground tissue of smaller, living assimilatory cells and larger, dead water-storage cells. Fibre bundles are usually absent but occur in several genera. Collateral vascular bundles show phloic sclerenchyma, but xylic sclerenchyma occurs only in die larger vascular bundles. Phloic and xylic sclerenchyma are associated with stegmata containing conical silica bodies. Roots are velamentous. Velamen cell walls have fine, spiral thickenings. Exodermal cells are thin-walled. The cortex features scattered thick-walled cells and in some cases branched bars of secondary cell wall material. Endodermis is either u-or O-thickened, but pericycle is always O-thickened opposite the phloem. Vascular tissue consists of alternating strands of xylem and phloem surrounded by a matrix of thick-walled cells. Pith cells may be parenchymatous or sclerenchymatous.  相似文献   

2.
Comparative vegetative anatomy and systematics of Vanilla (Orchidaceae)   总被引:1,自引:0,他引:1  
Vanilla is a pantropical genus of green-stemmed vines bearing clasping (aerial) and absorbing (terrestrial) roots. Most vanillas bear normal, thick foliage leaves; others produce fugacious bracts. Seventeen species, including both types were studied. Foliage leaves of Vanilla are glabrous, have abaxial, tetracytic stomatal apparatuses, and a homogeneous mesophyll. Species may or may not have a uniseriate hypodermis. Crystals occur in the foliar epidermises of some species, but all species have crystalliferous idioblasts with raphides in the mesophyll. Vascular bundles in leaves are collateral and occur in a single series alternating large and small. Sclerenchyma may or may not be associated with the vascular bundles. Scale leaves may be crescent or C-shaped and usually have abaxial stomatal apparatuses. A hypodermis may or may not be present; the mesophyll contains raphide bundles in idioblasts. Vascular bundles are collateral and occur in a single row sometimes aligned close to the adaxial surface. They may or may not be associated with sclerenchyma. Stems of leafy vanillas show a sclerenchyma band separating cortex from ground tissue; stems of leafless vanillas do not show a sclerenchyma band. Ground tissue of the stem may consist solely of assimilatory cells or mixed assimilatory and water-storage cells. In some species centrally located assimilatory cells are surrounded by layers of water-storage cells. A uniseriate hypodermis is present in all stems. Sclerenchyma may completely surround the scattered collateral vascular bundles, occur only on the phloem side, or be absent. Both aerial and terrestrial roots are notable for their uniseriate velamen the cell walls of which may be unmarked or ornamented with anticlinal strips. Exodermis is uniseriate; the cells vary from barely thickened to strongly thickened. Only the outer and radial walls are thickened. Cortical cells of aerial roots generally have chloroplasts that are lacking from the same tissue of terrestrial roots. Raphide bundles occur in thin-walled cortical idioblasts. Endodermis and pericycle are uniseriate; pericycle cells are all ?-thickened opposite the phloem. Cells of the endodermis are either ?- or ∪-thickened opposite the phloem. Vascular tissue may be embedded in thin- or thick-walled sclerenchyma or in parenchyma. Metaxylem cells are always wider in terrestrial than in aerial roots of the same species. Pith cells are generally parenchymatous but sclerotic in a few species.  相似文献   

3.
Leaves in Orchidinae are essentially glabrous; anticlinal walls of foliar epidermal cells arc basically straight-sided to curvilinear, and cells arc fundamentally polygonal on both surfaces; adaxial cells are larger than abaxial cells. Stomata arc anomocytic and usually only abaxial and superficial; substomatal chambers are small to moderate; outer and inner guard cell ledges are mostly small. There is no hypodermis nor are there fibre bundles. Mesophyll is homogeneous, chlorcnchyma cells arc thin-walled, and intercellular spaces numerous. Crystalliferous idioblasts abound. Vascular bundles are collateral, organized in a single series. and lack associated sclerenchyma. Bundle sheath cells are thin-walled and chlorophyllous. Stems are glabrous; stomata arc frequent in one species, lacking in others. Cortical cells are oval to circular, thick-walled, and interspersed with triangular intercellular spaces. Ground-tissue cells are circular, and triangular intercellular spaces are present. Vascular bundles arc collateral and scattered throughout the ground-tissue or are absent from the central ground-tissue. Epidermis in absorbing roots is one-layered and non-velamcntous. Exodcrmal cells are thin-walled and dead cell walls bear tenuous scalariform bars; some species lack an exodermis. Outer cortical cells are polygonal and lack intercellular spaces; middle layer cortical cells are rounded with triangular intercellular spaces; inner layer cells are polygonal and lack intercellular spaces. Endodermis and pericycle are thin-walled and one-layered. Vascular cylinder is mostly 7–9-arch with xylcm and phloem components alternating regularly; vascular tissue is embedded in parenchyma; pith cells are parenchymatous, polygonal, thin-walled and lack intercellular spaces. Root tubers generally bear a velamen of variable thickness; bulbous-based unicellular hairs frequently form a dense mat; exodermal cells are thin-walled; dead cells have scalariform bars, passage cells are sparse. Ground-tissue consists of rounded water-storage and assimilatory cells interspersed with triangular or quadrangular intercellular spaces; peripheral cells arc polygonal lacking intercellular spaces. Vascular tissue consists of monarch to pentarch meristeles distributed thoughout the ground-tissue each surrounded by a uniscriale endodermis of thin-walled cells. Thin roots ofPlalanthera exhibit a typical central cylinder surrounded by a homogeneous cortex uninterrupted by meristeles; thicker roots show a central vascular cylinder and cortex in which meristeles are also present; in globoid root tubers there is no central cylinder, and the ground-tissue is replete with scattered meristeles. Because the central vascular cylinder in Platanthera gives rise to branches (meristeles), these represent components of a single vascular system and are not separate stelar entities as implied by the use of the term ‘polystele’.  相似文献   

4.
Triphorinae represents a group of three anatomically simple genera, the structural features of which are unspecialized. The anomocytic stomatal pattern occurs in all genera; it predominates in Triphora. A foliar hypodermis, sclerenchyma, fibre bundles and stegmata are absent. The mesophyll is homogeneous. The exodermal and endodermal cells in the roots are entirely thin‐walled and tilosomes are absent. However, there are anatomical modifications that appear to be unique: root hairs in Monophyllorchis are borne on velamenal buttresses and, in Psilochilus, they arise endogenously. In the root vascular system of Psilochilus, the metaxylem occurs as a circumferential band. The surfaces of stems in Triphora are tuberculate. Mycorrhizae appear to characterize the root cortices of all genera. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 203–210.  相似文献   

5.
6.
STERN, W. L., MORRIS, M. W., JUDD, W. S., PRIDGEON, A. M. & DRESSLER, R. L. 1993. Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). The anatomy of leaf, stem and root of plants in the orchid subfamily Spiranthoideae was studied and described from the viewpoint of systematics. Plants were available from most of the geographic range. Tribes Diceratosteleae and Tropidieae show sinuous anticlinal epidermal cell walls in leaves, glandular foliar hairs, tetracytic para-mesoperigenous stomata, unitary tracheary components in the foliar midrib, foliar and cauline stegmata and sclerenchyma, typical cruciate starch grains, thick-walled exodermal, endodermal, and pericyclic cells, and conductive strands of the root embedded in sclerenchyma. The tribe Cranichideae shows straight to curvilinear anticlinal epidermal cell walls in leaves, lack glandular foliar hairs, have variably patterned mesoperigenous stomata, lack sclerenchyma throughout the parts studied, have a binary tracheary component in the foliar midrib, store starch in specialized amyloplasts (spiranthosomes), lack stegmata, have thin-walled exodermal, endodermal, and pericyclic cells, show scalariform thickenings in exodermal cells, and have conductive strands of the root embedded in parenchyma. In Cryptostylis the tracheary component of the foliar midrib is unitary, stomata lack subsidiary cells, starch grains are of the typical cruciate configuration, and passage cells of the endodermis are apparently associated with tilosomes. Anatomical data, when analysed cladistically, support the hypothesis that Spiranthoideae, as currently delimited, are polyphyletic. Corymborkis, Tropidia, and Diceratostele are more closely related to Palmorchis, a likely representative of a basal clade within subfamily Epidendroideae, than to genera of Cranichideae. Likewise, members of Cranichideae are more closely related to Diuris, a representative of subfamily Orchidoideae-tribe Diurideae, than to Corymborkis, Tropidia and Diceratostele. The Corymborkis– Tropidia-Diceratostele-bassd epidendroid [Palmorchis) clade may be diagnosed by the foliar synapomorphies of sinuous anticlinal walls of epidermal cells and presence of glandular hairs. The Cranichideae-orchidoid (Diuris) clade may be diagnosed by its variably patterned, mesoperigenous stomata, lack of vascular bundle sclerenchyma, absence of stegmata, unthickened endodermal cell walls in roots, and conductive cells of roots embedded in parenchyma. Relationships within this clade are quite unresolved, when only anatomical data are employed; however, all studied genera of Cranichideae, except Cryptostylis, possess a binary tracheary component in the foliar midrib. Cranichideae, excluding Cryptostylis, may be considered monophyletic. All Cranichideae, except Helaeria and Cryptostylis, possess spiranthosomes. Hetaeria may be a basal member within Cranichideae. We consider the phylogenetic position of Cryptostylis, in relation to Cranichideae vs. Diurideae, to be equivocal.  相似文献   

7.
Vegetative anatomy of subtribe Habenariinae (Orchidaceae)   总被引:1,自引:0,他引:1  
Leaves of Habenariinae are characterized by anomocytic stomatal apparatuses, homogeneous mesophyll, collateral vascular bundles in a single series, and thin-walled bundle sheath cells. There is no foliar sclerenchyma nor a hypodermis. Cauline cortex consists of thin-walled living cells among which are large and numerous intercellular spaces. The ground tissue is bordered externally by a layer of thick-walled living cells, except in Habenaria repens. Central ground tissue cells are living, and usually thin-walled surrounding intercellular spaces of various dimensions. These are conspicuously large in H. repens. Collateral vascular bundles are scattered across the ground tissue. Sclerenchyma is absent. Absorbing roots are generally velamentous, exodermal dead cells are diin-walled, and passage cells usually have a thickened outer wall. A regular vascular cylinder is present, and vascular tissue is embedded in parenchyma. Root tubers are velamentous, exodermal cells are usually thin-walled, and passage cells frequently have thickened outer walls. Vascular tissue of root tubers is organized into two classes: (1) those with a single vascular cylinder surrounded by a cortex and (2) those with a series of meristeles dispersed throughout the ground tissue. In group (1) cortex is homogeneous either with or without mucilage cells except in Stenoglattis where the cortex is heterogeneous, consisting of water-storage and assimilatory cells, and lacks mucilage cells. In group (2) the ground tissue consists of larger mucilage-containing cells and smaller assimilatory cells.  相似文献   

8.
A comparative study of leaf anatomy on Aniselytron Merr. and Calamagrostis Adans. s. l. was conducted to review the systematic status of Aniselytron Merr. Calamagrostis s. l. exhibits wide variation in many features, but basic leaf structures of the genus remain constant: absence of a midrib-keel; median and large vascular bundles are central, with double sheaths, accompanied by girders both adaxially and abaxially; prickles have a bulbous base and are not sunken; the abaxial epidermal cells are short and wide and relatively thick-walled. Aniselytron differs from Calamagrostis s. l. in: midrib-keel is present, consisting of a large central bundle with small ones on either side; all vascular bundles are abaxially situated, with abaxial girders only, parenchyma takes the place of the adaxial sclerenchyma; the bases of the prickles are sunken and are not bulbous; the abaxial epidermal cells are tall and thin-walled. These distinct anatomical features, in combination with the differences in spikelet structure and habitat, suggest that Aniselytron should be generically separated from and not merged with Calamagrostis s. l. Due to the adaxial parenchyma in the midrib which has never been found in Pooideae, Aniselytron might have a relationship with some other subfamily.  相似文献   

9.
《Flora》2006,201(7):555-569
We investigated the anatomical and chemical characteristics of the foliar vascular bundles in four ecotypes of common reed (Phragmites communis Trin.) inhabiting the desert region of northwest China: swamp reed (SR), low-salt meadow reed (LSMR), high-salt meadow reed (HSMR), and dune reed (DR). The cell walls of the vascular systems of all four ecotypes exhibited bright autofluorescence. Compared to SR, the three terrestrial ecotypes, LSMR, HSMR and DR, had higher percentages of bundle sheath cell areas, lower percentages of xylem and phloem areas, lower xylem/phloem ratios, and higher frequencies of leaf veins. In addition to differences in the autofluorescence intensity and the morphology of the detached cell walls of the vascular bundle sheath, the three terrestrial ecotypes also exhibited anatomical differences in the outerface tangential walls of the bundle sheath and higher frequencies of pit fields in the walls in comparison to SR. The Fourier transform infrared (FTIR) microspectroscopy spectra of the vascular bundle cell walls differed greatly among the tissues of the different ecotypes as well as within different tissues within each ecotype. Histochemical methods revealed that although pectins were present in all bundle tissue cell walls, large amounts of unesterified pectin were present in the phloem cell walls, especially in the salt reed ecotypes LSMR and HSMR, and large quantities of highly methyl-esterified pectin were present in the xylem and sclerenchyma cell walls of the SR and DR ecotypes. Differences were observed in the lignification and suberization of the xylem and sclerenchyma cell walls of the four ecotypes, but the phloem and bundle sheath cell walls were generally similar. These results suggest that the adaptation of common reed, a hydrophytic species, to saline or drought-prone dunes triggers changes in the anatomical and chemical characteristics of the foliar vascular bundle tissues. These alterations, including higher percentages of bundle sheath areas and lower percentages of xylem and phloem areas and their ratios, changes in the chemical compositions and modifications of the cell walls of different vascular bundle tissues, and differences in the deposition of major cell wall components in the walls of different vascular bundle tissues, could contribute to the high resistance of reeds to extreme habitats such as saline and drought-prone dunes.  相似文献   

10.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

11.
A comprehensive study of the nodal and leaf anatomy of Bonnetiaceae was completed in order to provide evidence for evaluation in relation to systematics. Nodal anatomy is trilacunar, three-trace or unilacunar, one-trace. Basic leaf anatomical features of the family include: complete or incomplete medullated vascular cylinder in petiole; paracytic mature stomata with encircling ridges; large mucilaginous cells in the adaxial surface of mesophyll; periclinal divisions in upper surface layers; and discrete patches of phloem within the vascular bundles. Especially noteworthy is the presence in some genera of foliar vascular bundles enveloped by a sheath composed of two concentric regions, i.e., an inner region consisting of multiple layers of fibers and an outer specialized endodermis composed of thin-walled cells with Casparian strips. Leaves are variable with respect to lamina and cuticle thickness, relative amount and number of palisade and spongy layers, venation of lamina, and the presence or absence of sclereids and crystals in the mesophyll. A major feature in the evolution of Bonnetiaceae is development of a highly divergent, essentially parallel, leaf venation that is superficially similar to that of some monocotyledons and apparently unique among dicotyledons. Foliar anatomy provides important characters for the recognition of subgroups within Bonnetiaceae and is consistent with the segregation of Bonnetiaceae from Theaceae.  相似文献   

12.
贺兰山10种不同植物的旱生结构研究   总被引:3,自引:0,他引:3  
对贺兰山10种不同生活型植物的形态解剖研究表明,长期生长在干旱贫瘠环境中植物,均形成适应生境的一些特殊形态结构.叶器官主要表现在:(1)叶表面积与体积之比缩小,表面覆有厚的角质膜,并被有表皮毛,气孔下陷,具孔下室;(2)栅栏薄壁组织细胞明显增多,海绵薄壁组织细胞减少.有叶肉不分化叶、等而叶和异而叶3种结构形式;(3)叶内贮水组织和机械组织增强。轴器官主要表现在:(1)根普遍形成周皮,且木栓层细胞层数增多;(2)机械组织非常发达,在周皮、皮层和韧皮部中有许多厚壁细胞分布。维管组织中的木薄壁细胞的细胞壁也明显木质化加厚;(3)有些植物的根具有异常维管组织。另外,这些植物根、茎、叶中均有粘液细胞和含晶细胞分布。这些结构具有重要的适应干旱生境的意义。  相似文献   

13.
采用石蜡切片和光学显微技术对闽楠(Phoebe bournei(Hemsl.)Yang)营养器官的解剖结构及其生态适应性进行了研究。结果显示,闽楠为典型异面叶,叶片中脉发达,维管束呈扇形,导管径向排列,韧皮部外侧有大量韧皮纤维分布。上表皮外侧具角质层,下表皮外侧无角质层,下表皮细胞呈犬牙状向外凸起,有表皮毛和气孔分布,气孔为双环型、外凸;栅栏组织由1层细胞组成,海绵组织由3~4层细胞组成。茎的初生结构中,表皮轻微角质化,厚角细胞5~6层,薄壁细胞5~7层,维管束为外韧型;茎的次生结构中,表皮外部角质层加厚,木栓层细胞3~4层,木栓形成层细胞1层,栓内层细胞2~3层,维管束紧密排列连成环状,次生韧皮部和次生木质部发达,形成层细胞2~3层。根的次生结构中木栓层细胞5~6层,木栓层内侧具1层木栓形成层,栓内层细胞2层。闽楠营养器官的解剖结构特征一方面呈现出阴生植物的特点,另一方面也对阳生和旱生环境具有一定的适应性。  相似文献   

14.
The lamina, main vein and peduncle anatomical properties of Centaurea sadleriana Janka plants from two populations, were examined using light and scanning electron microscopy. The indumentum was comprised of glandular and non-glandular trichomes of two types. The leaves were amphistomatic, isolateral, with strongly developed palisade tissue. Secretory ducts were observed along the phloem or sclerenchyma of large vascular bundles. Collenchyma alternated with chlorenchyma in the main vein and peduncle. Large groups of strongly lignified sclerenchyma were present along the phloem of peduncle vascular bundles. These features, together with thickened walls of epidermal cells and cuticle, numerous trichomes and thick-walled parenchyma in the perimedullar zone, were perceived as a xeromorphic peduncle structural adaptation. Non-enzymatic antioxidant compounds of phenolic origin were detected in small amounts and their respective content was higher in leaves compared to inflorescences. Compounds of phenolic orgin showed positive correlation with total potenial of antioxidant activity indicated by the DPPH assay. Greater total quantity of polyphenols and tannins was detected in leaves of plants from Zobnatica locality, while leaves of plants from Rimski Sanac were characterized by higher content of total flavonoids and proantocyanidins. Phytochemical analysis showed that dominant secondary biomolecules in inflorescences were phenolic pigments including anthocyanins and leucoanthocyanins, and free quinones in leaves.  相似文献   

15.
葡萄属营养器官的比较解剖学及其系统学意义   总被引:7,自引:0,他引:7  
本文对国产葡萄属24个种、6个变种和4个美洲种进行了比较解剖学研究。比较观察了茎、节、 叶柄、叶片的维管系统、厚角组织、厚壁组织、毛状体、后含物、叶表皮角质等解剖学特征。并讨论了它们在系统学上的意义。  相似文献   

16.
Using data obtained through anatomy and morphology, we used cladistics to examine the monophyly of Senghas's proposed classification of Maxillaria cushion plants and his placement of Mormolyca ringens. Trignidium obtusum was chosen as the outgroup. Leaves have multicellular hairs sunken in crypts, primarily anomocytic or primarily tetracytic stomatal apparatuses, homogeneous mesophyll, and scattered fibre bundles. Three types of adaxial hypodermis were observed: (1) water-storage cells, (2) fibre bundles scattered among water-storage cells, and (3) fibre bundles scattered among chlorenchymatous cells. Abaxial hypodermis of fibre bundles occurs in several Maxillaria species and in Trigonidium obtusum. At the midvein of the leaf, adaxial mesophyll cells of most species are anticlinally extended and empty, and the abaxial mesophyll is usually collenchymatous. Vascular bundles are collateral and usually in a single series. Pseudobulb epidermal cell walls are thin, or outer walls are thickened. Ground tissue consists of water-storage and assimilatory cells with vascular bundles and associated lacunae scattered throughout. Roots are velamentous and exodermal cell walls are usually n-thickened with tenuous bands of scalarifom thickenings on longitudinal walls. Tilosomes may be plaited, baculate, or spongy. Endodermal cell walls are usually U-thickened and pericycle cell walls are usually O-thickened opposite phloem sectors. Stegmata line the periphery of the thickened pericycle cells opposite phloem sectors in M. picta. Pith may be parenchymatous or sclerenchymatous. According to our phylogenetic analysis, Mormolyca ringens is consistently nested within the cladistic structure of Maxillaria. Therefore, Maxillaria likely is paraphyletic if Mormolyca ringens is recognized as generically distinct. It appears that Senghas's subgroup divisions of the unifoliate pseudobulbous maxillarias may also be artificial.  相似文献   

17.
On the basis of floral and vegetative morphology, 63 tropical American genera have been recognized within Maxillarieae. We were able to examine anatomical material of all subtribes, excluding Oncidiinae. Stegmata with conical silica bodies occur in leaves and stems of all subtribes excluding Ornithocephalinae, and pericyclic stegmata found in roots are characteristic of Lycastinae. Lycastinae and Maxillariinae are characterized by foliar glands, foliar fibre bundles and tilosomes. Endodermal cells are U-thickened in most Zygopetalinae; O-thickened in most Lycastinae, Ornithocephalinae and Telipogoninae; variously thickened in Maxillariinae; and thin-walled in Cryptarrhena lunata . Water-storage cells varied from thin-walled to variously banded throughout Maxillarieae. Cladistic analyses using anatomical characters yielded no resolution among subtribes, illustrating that anatomical characters are of limited value in assessing relationships within this tribe.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 251–274.  相似文献   

18.
The stem anatomy of Turbinicarpus s.l. was studied with the aims of finding characters to support the three clades (Rapicactus, Kadenicarpus, and Turbinicarpus) in which Turbinicarpus s.l. was recovered in the most recent phylogeny of the Cacteae tribe. Thirty-five taxa were prepared, and their tissues were compared. Substantial variation was found in the epidermal surface. The hypodermis has concentric druses (Rapicactus clade) or prismatic crystals (Kadenicarpus and Turbinicarpus clades) in the cell lumina. There are abundant collateral cortical bundles, but they are amphicribal in a few taxa, and xylary fibers occur in the Kadenicarpus clade. All members of Turbinicarpus s.l. have phloem without sclerenchyma and nonfibrous wood, except for T. subterraneus, which has wood with few fibers. The periderm has an epidermal origin, and the phellem may have thin-walled cells or alternating thin- to thick-walled layers. Our results support the three clades. The Kadenicarpus clade comprises the species with xylary fibers in cortical bundles, but it shares prismatic crystals in the hypodermis, thin-walled phellem cells and partially dilated rays with the Turbinicarpus clade. The members of the Rapicactus clade have concentric druses in the hypodermis. The anatomical features proved to be valuable to support the recognition of monophyletic clades.  相似文献   

19.
The anatomical characters of the rachis of Compsopteris elliptica ex Yang et Chen are described from the calc-petrified specimens of the Late Permian of Panxing, Guizhou, China. The main characters of its rachis are as follows (Plate I, 1–4; 6–9): The vascular bundles of 2– 2.5 cycles and ectophloic type. Phloem, consisting of 1–2 layers of cells. Protoxylem, composed of several small tracheids which are less than 20μm in diameter. Metaxylem, consisting of 2–3 layers of tracheids, about 30μm in diameter, scalariform thickenning. The sclerenchyma zone lies between the vascular bundles, its cell, small, 20–25 μm in diameter, some containing brown substances. The cortex could be divided into two zones: outer zone, consisting of thin-walled cells, and inner zone, thicken-walled cells, with secretory cavities. Epidermis, one layer, rectangular, some with contents. Compsopteris sp. (Plate I,5) 3–4 cycles vascular bundles, the same as C. elliptica in many respects; only larger than C. ellipptica in diameter. It may represent the base part of the rachis or larger rachis. Based on the shape of vascular bundles and the structure of xylem and phloem, Compsopteris is very similar to Angiopteris, Danaea etc., which all belong to the Marattiales. In addition, Huang et al. (1989) found that the sporangia of Compsopteris is similar to that of Danaeites, which belongs to the Maratriales. Therefore, Compsopteris doer not belong to the seed fern, bur the Marattiales.  相似文献   

20.
芦荟维管束的结构与芦荟素积累的相关性   总被引:8,自引:1,他引:7  
应用半薄切片、组织化学、荧光显微镜观察和薄层层析 (TLC)相结合的方法研究了中华芦荟 (Aloeve-ra L.var.chinensis)、木立芦荟 (Aloe arborescens)叶和茎内维管束的结构及其与芦荟素积累的关系。结果表明 ,木立芦荟叶内维管束和中华芦荟叶内外轮的维管束中有大型韧皮薄壁细胞 ,而木立芦荟茎和中华芦荟叶中内轮维管束无大型韧皮薄壁细胞。组织化学结果表明 ,用醋酸铅处理过的上述材料 ,大型韧皮薄壁细胞内出现沉淀物 ;在荧光显微镜下经蓝光激发 ,大型韧皮薄壁细胞发出桔黄色荧光 ,都显示出芦荟素反应。薄层层析(TLC)结果证明 ,木立芦荟和中华芦荟叶含有大型韧皮薄壁细胞的维管束都含芦荟素 ,而木立芦荟茎及中华芦荟叶中内轮维管束都不含芦荟素。为此 ,维管束中的大型韧皮薄壁细胞与芦荟素的积累密切相关 ,维管束中是否有大型韧皮薄壁细胞可作为判断是否含有芦荟素的解剖学指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号