首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Exploring the relative contribution of spatial factors and environmental variables in shaping communities is of widespread interest in biodiversity conservation and environmental management. Stream communities are hierarchically regulated by environmental variables over multiple spatial scales, and the reaction of different organisms to stressors are still equivocal. We sampled both macroinvertebrates and diatom at 80 sites and additional 10 sites for macroinvertebrates, field measured and laboratory analyzed environmental variables, from the tributaries of Qiantang River, Yangtze River Delta China in 2011. We used PCNM (principal coordinates of neighbor matrices) to generate spatial predictors. We applied redundancy analysis and variation partitioning procedures to identify key spatial and environmental factors, and to quantify their relative roles in shaping diatom and macroinvertebrate assemblages. Our results demonstrated the role of spatial and environmental variables differed in shaping benthic diatom and macroinvertebrate. Diatom assemblage variations were better explained by spatial factors, however macroinvertebrate assemblage variations were better explained by environmental variables. In terms of environmental variables, catchment scale variables (e.g., land use estimators, land use diversity) played the primary role in determining the patterns of both diatom and macroinvertebrate assemblages, whereas the influence of reach-scale variables (e.g., pH, substrates, and nutrients) appeared less. However, nutrients were the stronger factors influencing benthic diatom, whereas physical habitat (e.g., substrates) played more important role than water chemistry in structuring macroinvertebrates. Our results provided more evidence to the incorporation of spatial factors interpreting spatial patterns of stream organisms, and highlighted the useful of multiple organisms and environmental variables at different spatial scales in diagnosing mechanism of stream degradation and in building a sound stream conditions monitoring program for Yangtze River Delta.  相似文献   

3.
4.
1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream‐dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera–Plecoptera–Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach‐scale habitat assessments can serve as cost‐effective indicators of benthic macroinvertebrate communities. Using stream‐dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment.  相似文献   

5.
张勇  刘朔孺  于海燕  刘东晓  王备新 《生态学报》2012,32(14):4309-4317
溪流底栖动物群落结构受不同空间尺度环境因子的共同作用。基于2010年钱塘江中游流域60个样点的大型底栖无脊椎动物和环境变量数据,寻找与研究流域底栖动物群落结构变化密切相关的关键环境变量,解析流域尺度和河段尺度的环境因子对底栖动物群落的相对影响。PCA分析表明该区域的主要环境梯度是流域内的土地利用类型及其引起的溪流物理生境退化程度和水体营养状态。CCA分析发现影响底栖动物群落的流域尺度的关键环境变量是纬度、海拔、样点所在流域大小、森林用地百分比,河段尺度是总氮、总磷、钙浓度、二氧化硅浓度和平均底质得分。偏CCA分析得到两种尺度环境因子对底栖动物变异的总解释量为26.4%,流域尺度和河段尺度变量分别为总解释量的50%和31%;方差分解结果表明研究区域大型底栖无脊椎动物受到两种尺度环境因子的综合影响,且流域尺度环境因子较河段尺度环境因子更为重要,体现了其在溪流生态系统保护、恢复、监测和评价中的重要参考价值。  相似文献   

6.
7.
We developed ecological indicators of stream macroinvertebrates in two regions of the Midwestern USA dominated by row-crop agriculture. Indicators were identified in a hierarchical fashion. Reach-scale variables related to macroinvertebrate attributes were first identified, and then catchment-scale variables related to those reach-scale variables were identified. Reach-scale indicators common to both regions were % fine sediments, number of habitats, and width:depth ratio. SD of elevation and % commercial land use were selected as catchment-scale indicators in both regions. Our analyses revealed a multi-scale mechanistic relationship between macroinvertebrate attributes associated with degraded conditions (i.e., fewer taxa of Plecoptera and Trichoptera, and a higher proportion of chironomids, burrowers, and depositional taxa) and % fine sediments in stream reaches, which, in turn, was negatively related to catchment characteristics (i.e., SD of elevation) in one region. Understanding how natural variables such as topography influence channel shape and within-channel structure can help guide management options and expectations for different regions. We suggest that developing multi-scale indicators in a mechanistic fashion will be more effective than developing indicators at only one spatial scale for protecting and restoring stream structure and function.  相似文献   

8.
1. This study investigated the relation of benthic macroinvertebrates to environmental gradients in Central European lowland rivers. Taxonomic structure (taxa) and functional composition (metrics) were related to gradients at four different spatial scales (ecoregion, catchment, reach and site). The environmental variables at the catchment‐, reach‐ and site scales reflected the intensity of human impact: catchment and floodplain land use, riparian and floodplain degradation, flow regulation and river bank and bed modification. 2. Field surveys and GIS yielded 130 parameters characterising the hydromorphology and land use of 75 river sections in Sweden, the Netherlands, Germany and Poland. Two hundred and forty‐four macroinvertebrate taxa and 84 derived community metrics and biotic indices such as functional guilds, diversity and composition measures were included in the analysis. 3. Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) showed that hydromorphological and land use variables explained 11.4%, 22.1% and 15.8% of the taxa variance at the catchment (‘macro’), reach (‘meso’) and site (‘micro’) scales, respectively, compared with 14.9%, 33.2% and 21.5% of the variance associated with the derived metrics. Ecoregion and season accounted for 10.9% and 20.5% of the variance of the taxonomic structure and functional composition, respectively. 4. Partial CCA (pCCA) and RDA (pRDA) showed that the unique variance explained was slightly higher for taxa than for metrics. By contrast, the joint variance explained for metrics was much higher at all spatial scales and largest at the reach scale. Environmental variables explained 46.8% of metric variance and 32.4% of taxonomic structure. 5. Canonical Correspondence Analysis and RDA identified clear environmental gradients along the two main ordination axes, namely, land use and hydromorphological degradation. The impact of catchment land use on benthic macroinvertebrates was mainly revealed by the proportion of urban areas. At the reach scale, riparian and floodplain attributes (bank fixation, riparian wooded vegetation, shading) and the proportion of large woody debris were strong predictors of the taxonomic structure and functional composition of benthic macroinvertebrates. At the site scale, artificial substrata indicated human impact, particularly the proportion of macro‐ and mesolithal used for bank enforcement (rip–rap). 6. Our study revealed the importance of benthic macroinvertebrate functional measures (functional guilds, composition and abundance measures, sensitivity and tolerance measures, diversity measures) for detecting the impact of hydromorphological stress at different spatial scales.  相似文献   

9.
1. Restoration of riparian forests has been promoted as a means of mitigating urban impacts on stream ecosystems. However, conventional urban stormwater drainage may diminish the beneficial effect of riparian forests.
2. The relative effects of riparian deforestation and catchment urbanisation on stream ecosystems have rarely been discriminated because urban land use and riparian degradation usually covary. However, land use at three scales (channel canopy cover along a 100-m site, riparian forest cover within 200 m of the channel for 1 km upstream, and catchment imperviousness) covaried only weakly along the lowland Yarra River, Victoria, Australia.
3. We tested the extent to which each land use measure explained macroinvertebrate assemblage composition on woody debris and in the sediments of pools or runs in the mainstem Yarra River in autumn and spring 1998.
4. Assemblage composition in both habitats and in both seasons was most strongly correlated with proportion of catchment covered by impervious surfaces. Sites with higher imperviousness had fewer sensitive taxa (those having a strong positive influence on indicators of biological integrity) and more taxa typical of degraded urban streams. Sensitive taxa rarely occurred in sites with >4% total imperviousness. However, within sites of similar imperviousness, those with more riparian forest cover had more dipteran taxa. Channel canopy cover did not explain assemblage composition strongly.
5. Riparian forest cover may influence richness of some macroinvertebrate taxa, but catchment urbanisation probably has a stronger effect on sensitive taxa. In catchments with even a small amount of conventionally drained urban land, riparian revegetation is unlikely to have an effect on indicators of stream biological integrity. Reducing the impacts of catchment urbanisation through dispersed, low-impact drainage schemes is likely to be more effective.  相似文献   

10.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

11.
12.
13.
14.
Leonard Sandin 《Ecography》2003,26(3):269-282
Spatial scale, e.g. from the stream channel, riparian zone, and catchment to the regional and global scale is currently an important topic in running water management and bioassessment. An increased knowledge of how the biota is affected by human alterations and management measures taken at different spatial scales is critical for improving the ecological quality of running waters. However, more knowledge is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of running water organisms. In this study, benthic macroinvertebrate data from 628 randomly selected streams were analysed for geographical and environmental relationships. The dataset also included 100 environmental variables, from local measures such as in-stream substratum and vegetation type, catchment vegetation and land-use, and regional variables such as latitude and longitude. Cluster analysis of the macroinvertebrate data showed a continuous gradient in taxonomic composition among the cluster groups from north to south. Both locally measured variables (e.g. water chemistry, substratum composition) and regional factors (e.g. latitude, longitude, and an ecoregional delineation) were important for explaining the variation in assemblage structure and taxon richness for stream benthic macroinvertebrates. This result is of importance when planning conservation and management measurements, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g. global warming) will affect running water ecosystems.  相似文献   

15.
16.
SUMMARY 1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream. 2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover. 3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively. 4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non‐metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models. 5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.  相似文献   

17.
  1. Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver-induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter-mountain west, an area with high potential for beaver-assisted restoration.
  2. The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north-eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver-occupied streams.
  3. Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.
  4. Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance of Baetis within lotic reaches. More beaver pond taxa were classified as lentic-dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.
  5. The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north-eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.
  相似文献   

18.
Macroinvertebrate assemblages were related to environmental factors that were quantified at the sample scale in streams subjected to a gradient of cattle grazing. Environmental factors and macroinvertebrates were concurrently collected so assemblage structure could be directly related to environmental factors and the relative importance of stressors associated with cattle grazing in structuring assemblages could be assessed. Based on multivariate and inferential statistics, measures of physical habitat (% fines and substrate homogeneity) had the strongest relationships with macroinvertebrate assemblage structure. Detrital food variables (coarse benthic and fine benthic organic matter) were also associated with assemblage structure, but the relationships were never as strong as those with physical habitat measures, while autochthonous food variables (chlorophyll a and epilithic biomass) appeared to have no association with assemblage structure. The amount of variation explained in taxa composition and macroinvertebrate metrics is within values reported from studies that have examined macroinvertebrate metric–sediment relationships. The % Coleoptera and % crawlers had consistent relationships with % fines during this study, which suggests they may be useful metrics when sediment is a suspected stressor to macroinvertebrate assemblages in Blue Ridge streams. Findings from this study also demonstrate the importance of quantitative sampling through time when research goals are to identify relationships between macroinvertebrates and environmental factors.  相似文献   

19.
Resolving land cover hierarchy relationships in urban settings is important for defining the scale and type of management required to enhance stream health. We investigated associations between macroinvertebrate assemblages in urban streams of Hamilton, New Zealand, and environmental variables measured at multiple spatial scales comprising (i) local-scale physicochemical conditions, (ii) impervious area in multiple stream corridor widths (30, 50 and 100 m) along segments (sections of stream between tributary nodes) and for entire upstream networks, and (iii) total impervious area in stream segment sub-catchments and upstream catchments. Imperviousness was higher for stream segment sub-catchments than for entire catchments because of the agricultural headwaters of some urban streams. Imperviousness declined as corridor width declined at both segment and catchment scales reflecting the vegetated cover along most urban stream gullies. Upstream catchment imperviousness was strongly and inversely correlated with dissolved organic carbon concentration, whereas segment and upstream corridor scales were correlated with water temperature and pH. Corridor imperviousness appeared to be a stronger predictor than catchment imperviousness of Ephemeroptera, Plecoptera and Trichoptera taxa richness and the Quantitative Urban Community Index specifically developed to assess impacts of urbanisation. In contrast, imperviousness at all measured scales added only marginal improvement in assemblage-based models over that provided by the local-scale physicochemical variables of reach width, habitat quality, macrophyte cover, pH and dissolved oxygen concentration. These findings infer variable scales of influence affecting macroinvertebrate communities in urban streams and suggest that it may be important to consider local and corridor factors when determining mechanisms of urbanisation impacts and potential management options.  相似文献   

20.
We sampled chlorophyll a, benthic organic matter, and benthic macroinvertebrates in June 2001 in La Tordera stream (Catalonia, NE Spain), receiving a wastewater treatment plant (WWTP) input. Samples were collected in six equidistant transects in three reaches located upstream (UP), few m below (DW1), and 500 m below the WWTP input (DW2). Our first objective was to assess the effects of the point source on the structure and functional organization of the benthic macroinvertebrate community. Our second objective was to determine if the self-purifying capacity of the stream implied differences between the communities of the DW1 and the DW2 reaches. The WWTP input highly increased discharge, nutrient concentrations, and conductivity and decreased dissolved oxygen. At the DW1 and the DW2 reaches, taxa richness, EPT taxa (Ephemeroptera, Plecoptera, and Trichoptera), and Shannon diversity decreased and gatherer relative density increased relative to the UP reach. At the UP reach, CPOM and FPOM standing crops were similar, whereas at the DW1 and the DW2 reaches CPOM was two times higher than FPOM. Detailed analysis showed that major changes in the benthic community occurred abruptly between 80 and 90 m downstream of the point source (middle of the DW1 reach). At this location, chlorophyll a concentration, density of macroinvertebrates, taxa richness, and scraper relative density increased, whereas gatherer relative percentage decreased. The macroinvertebrate community at the DW2 reach was comparable to that at the second middle of the DW1 reach (DW1B). The macroinvertebrate community at the DW1B and the DW2 reaches were quite similar to that at the UP reach, indicating that the recovery capacity of the stream from nutrient enrichment was high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号