首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Exploring the relative contribution of spatial factors and environmental variables in shaping communities is of widespread interest in biodiversity conservation and environmental management. Stream communities are hierarchically regulated by environmental variables over multiple spatial scales, and the reaction of different organisms to stressors are still equivocal. We sampled both macroinvertebrates and diatom at 80 sites and additional 10 sites for macroinvertebrates, field measured and laboratory analyzed environmental variables, from the tributaries of Qiantang River, Yangtze River Delta China in 2011. We used PCNM (principal coordinates of neighbor matrices) to generate spatial predictors. We applied redundancy analysis and variation partitioning procedures to identify key spatial and environmental factors, and to quantify their relative roles in shaping diatom and macroinvertebrate assemblages. Our results demonstrated the role of spatial and environmental variables differed in shaping benthic diatom and macroinvertebrate. Diatom assemblage variations were better explained by spatial factors, however macroinvertebrate assemblage variations were better explained by environmental variables. In terms of environmental variables, catchment scale variables (e.g., land use estimators, land use diversity) played the primary role in determining the patterns of both diatom and macroinvertebrate assemblages, whereas the influence of reach-scale variables (e.g., pH, substrates, and nutrients) appeared less. However, nutrients were the stronger factors influencing benthic diatom, whereas physical habitat (e.g., substrates) played more important role than water chemistry in structuring macroinvertebrates. Our results provided more evidence to the incorporation of spatial factors interpreting spatial patterns of stream organisms, and highlighted the useful of multiple organisms and environmental variables at different spatial scales in diagnosing mechanism of stream degradation and in building a sound stream conditions monitoring program for Yangtze River Delta.  相似文献   

2.
Community response to environmental gradients operating at hierarchical scales was assessed in studies of benthic diatoms, macroinvertebrates and fish from 44 stream sites in the New York City watershed. Hierarchical cluster analysis (TWINSPAN) of diatoms and fish partitioned the study sites into four groups, i.e., acid streams, reservoir outlets and wetland streams, large eutrophic streams, and small eutrophic streams; macroinvertebrate TWINSPAN distinguished an additional group of silty eutrophic streams. The correspondence among the three assemblage TWINSPAN groupings was moderate, ranging from 51 to 57%. The similarity across the four major group types was the highest among large eutrophic stream and acid stream assemblages, and the lowest among small eutrophic stream assemblages. Stepwise discriminant function analysis revealed that environmental factors discriminated most effectively the diatom grouping and least effectively the fish grouping. The best environmental predictors for diatom and macroinvertebrate grouping were conductance and percent surface water, while population density was most powerful in separating the fish groups. Carbaryl was the only pesticide that correlated with macroinvertebrate grouping. Partial redundancy analyses suggested a differential dependence of freshwater communities on the scale of the environmental factors to which they respond. The role of small‐scale habitat and habitatland cover/land use interaction steadily increased across the diatom, macroinvertebrate, and fish assemblages, whereas the effect of large‐scale land cover/land use declined.  相似文献   

3.
1. Both local and regional processes simultaneously control species assemblages depending on spatial habitat configuration. In dendritic networks like streams, the unique spatial arrangement of habitats produces various combinations of local habitat size and isolation. Stream invertebrate assemblages could therefore be controlled by different combinations of local and regional processes, depending on their location in the network. 2. Using quantile regression, we investigated how local habitat size, local environmental conditions and spatial isolation influenced variation in assemblage composition. Adult Trichoptera and benthic macroinvertebrate assemblages were represented by non‐metric multidimensional scaling (NMDS) ordination scores, as were local environmental conditions, in four headwater stream networks in New Zealand. 3. With increasing local habitat size, there was a decrease in variation in assemblage composition (NMDS scores) of both adult Trichoptera and benthic macroinvertebrates. This relationship between habitat size and assemblage variation was related to local habitat conditions at the upper limit of assemblage variability and spatial isolation at the lower limit of assemblage variability, for both adult Trichoptera and benthic assemblages, indicating joint local and regional controls on stream invertebrate assemblages. 4. The relationships between local assemblages and their neighbours, based on community similarity scores, differed between benthic macroinvertebrates and adult Trichoptera. For benthic assemblages, the larger the stream, the more similar assemblages were to neighbouring assemblages, whereas there was no consistent relationship between assemblage similarity and stream size for adult Trichoptera. This difference in structuring could be attributed to contrasting spatial influences linked to the different dispersal modes of adults and larvae. However, because adult and benthic assemblages are not independent, the influence of life stage on spatial distribution is difficult to determine (i.e. it is essentially a ‘chicken and egg’ argument). 5. Overall, our approach using quantile regression to evaluate limit responses, rather than regressions on means, has highlighted the joint importance of local habitat and spatial processes in structuring stream invertebrate assemblages. Furthermore, we have provided evidence for the importance of the spatial network arrangement and interactions between life stages and dispersal processes, in structuring stream assemblages.  相似文献   

4.
This research summarizes the data on benthic macroinvertebrates collected in the 15 streams during spring (June) and fall (September–October) of 2022. The objectives of this study were (i) to evaluate the quality of surface waters, sediments, and benthic macroinvertebrates ; and (ii) to compare the relationship with the environmental variables in water, sediments and benthic macroinvertebrates that inhabit 15 streams. A total of 114 taxa were collected. The assemblages from the 15 sites were dominated by Chironomidae and Tubificidae, especially Chironomidae constituted 45.0% density occurrence. The low grades of Benthic Macroinvertebrate Index (BMI) were calculated in 10 sites with disturbed (“poor” or “very poor”). Low BMI sites mostly showed Tubificidae or Chironomidae dominant characteristics. The biological indices, BMI, % Tubificidae, and % Chironomidae, were significantly correlated with DO and conductivity. DO was also significantly correlated with all the benthic macroinvertebrate factors and diversity except percent Tubificidae. The heavy metal parameters were correlated mostly with species number, BMI, and diversity index. The objectives of this study examine the diversity of benthic macroinvertebrate in the 15 streams and investigate the relative importance of environmental quality for benthic macroinvertebrate distribution.  相似文献   

5.
Travertine deposition occurs in streams worldwide but its effects on stream communities are poorly understood. I sampled benthic macroinvertebrates, periphyton, and reach-scale environmental variables in coastal streams in Big Sur, central California, USA, to determine the specific effects of travertine that occurred at some sites as well as to provide a broader assessment of community–habitat relationships. Total density and biomass of macroinvertebrates varied 6- and 9-fold across sites, respectively, and chlorophyll a concentrations varied 10-fold, but invertebrate and periphyton abundances were not correlated. Baetis tricaudatus (Ephemeroptera), Simuliidae (Diptera), and Chironomidae (Diptera) dominated macroinvertebrate communities across all sites, although differences in the relative abundances of these and other taxa produced moderate variation in community structure among sites (Bray-Curtis similarity coefficients of 47–84). Variation in community structure was related to a number of habitat features, notably travertine but also including variables reflecting channel morphology, flow, substrate size, and riparian tree type. Median density and biomass of macroinvertebrates were more than twice as high at sites without travertine than sites with travertine. Taxa richness also was higher at sites without travertine, and community structure differed moderately between sites with and without travertine, although there were no particular assemblages associated with either group. Non-metric multidimensional scaling (MDS) and cluster analysis of similarities in community structure appeared to separate sites with either travertine or high fines from sites without those conditions. These results demonstrate that travertine can have strong effects on stream communities, and additional studies are needed to identify the full range of effects on ecosystems and to evaluate the potential consequences of travertine for conservation efforts such as biomonitoring programs and threatened species management. Handling editor: R. Bailey  相似文献   

6.
Community structure of benthic macroinvertebrates was studied in six first- through fourth-order streams in northeast France, to elucidate changes in richness, abundance, diversity and evenness of mesohabitat assemblages as a function of environmental conditions. Patch samples were subjected to multivariate analyses to determine: (i) relationships among seven indices describing community structure (structure parameters); (ii) relationships among seven environmental variables; (iii) the relationship between community structure and environmental characteristics of patches. Faunal data showed that indices measuring the distribution of individuals among taxa (evenness, dominance) and richness are prominent in describing the structure of macroinvertebrate communities of mesohabitats. The analysis of environmental data demonstrated a major differentiating ability of current velocity and strong inter-relations among in-stream hydraulic-dependent parameters in structuring the mesohabitat environment. The co-structure (= relationship) between community organization and environmental variables indicated that substrate may be a primary determinant of community structure. Current velocity and water depth emerged as secondary factors. Trends in community structure were closely related to the spatial variability of mesohabitats. Species richness increased with habitat heterogeneity. Total abundance increased with trophic potentialities of patches. Equitability and diversity seemed to increase with patch stability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Aim To identify the most important environmental drivers of benthic macroinvertebrate assemblages in boreal springs at different spatial scales, and to assess how well benthic assemblages correspond to terrestrially derived ecoregions. Location Finland. Methods Benthic invertebrates were sampled from 153 springs across four boreal ecoregions of Finland, and these data were used to analyse patterns in assemblage variation in relation to environmental factors. Species data were classified using hierarchical divisive clustering (twinspan ) and ordinated using non‐metric multidimensional scaling. The prediction success of the species and environmental data into a priori (ecoregions) and a posteriori (twinspan ) groups was compared using discriminant function analysis. Indicator species analysis was used to identify indicator taxa for both a priori and a posteriori assemblage types. Results The main patterns in assemblage clusters were related to large‐scale geographical variation in temperature. A secondary gradient in species data reflected variation in local habitat structure, particularly abundance of minerogenic spring brooks. Water chemistry variables were only weakly related to assemblage variation. Several indicator species representing southern faunistic elements in boreal springs were identified. Discriminant function analysis showed poorer success in classifying sites into ecoregions based on environmental than on species data. Similarly, when classifying springs into the twinspan groups, classification based on species data vastly outperformed that based on environmental data. Main conclusions A latitudinal zonation pattern of spring assemblages driven by regional thermal conditions is documented, closely paralleling corresponding latitudinal patterns in both terrestrial and freshwater assemblages in Fennoscandia. The importance of local‐scale environmental variables increased with decreasing spatial extent. Ecoregions provide an initial stratification scheme for the bioassessment of benthic macroinvertebrates of North European springs. Our results imply that climate warming, landscape disturbance and degradation of spring habitat pose serious threats to spring biodiversity in northern Europe, especially to its already threatened southern faunistic elements.  相似文献   

8.
1. Dam removal has great potential for restoring rivers and streams, yet limited data exist documenting recovery of associated biota within these systems following removals, especially on larger systems. This study examined the effects of a dam breach on benthic macroinvertebrate and fish assemblages in the Fox River, Illinois, U.S.A. 2. Benthic macroinvertebrates and fish were collected above and below the breached dam and three nearby intact dams for 1 year pre‐ and 3 years post‐breach (2 years of additional pre‐breach fish data were obtained from previous surveys). We also examined the effects of the breach on associated habitat by measuring average width, depth, flow rate and bed particle size at each site. 3. Physical habitat at the former impoundment (IMP) became comparable to free‐flowing sites (FF) within 1 year of the breach (width and depth decreased, flow rate and bed particle size increased). We also found a strong temporal effect on depth and flow rate at all surveyed sites. 4. Following the breach, relative abundance of Ephemeroptera, Plecoptera and Trichoptera (largely due to hydropsychid caddisflies) increased, whereas relative abundance of Ostracoda decreased, in the former IMP to levels comparable to FF sites. High variation in other metrics (e.g. total taxa, diversity) precluded determination of an effect of the breach on these aspects of the assemblage. However, non‐metric multidimensional scaling (NMDS) ordinations indicated that overall macroinvertebrate assemblage structure at the former IMP shifted to a characteristically FF assemblage 2 years following the breach. 5. Total fish taxa and a regional fish index of biotic integrity became more similar in the former IMP to FF sites following the breach. However, other fish metrics (e.g. biomass, diversity, density) did not show a strong response to the breach of the dam. Ordinations of abundance data suggested the fish assemblage only slightly shifted to FF characteristics 3 years after the breach. 6. Effects of the breach to the site immediately below the former dam included minor alterations in habitat (decreased flow rate and increased particle size) and short‐term changes in several macroinvertebrate metrics (e.g. decreased assemblage diversity and EPT richness for first post‐year), but longer‐term alterations in several fish metrics (e.g. decreased assemblage richness for all three post‐years; decreased density for first two post‐years). However, NMDS ordinations suggested no change to overall assemblage structure for both macroinvertebrates and fish following the breach at this downstream site. 7. Collectively, our results support the effectiveness of dam removal as a restoration practice for impaired streams and rivers. However, differences in response times of macroinvertebrates and fish coupled with the temporal effect on several habitat variables highlight the need for longer‐term studies.  相似文献   

9.
Peeters  Edwin T.H.M.  Gylstra  Ronald  Vos  Jose H. 《Hydrobiologia》2004,519(1-3):103-115
The relative contribution of sediment food (e.g. organic matter, carbohydrates, proteins, C, N, polyunsaturated fatty acids) and environmental variables (e.g. oxygen, pH, depth, sediment grain size, conductivity) in explaining the observed variation in benthic macroinvertebrates is investigated. Soft bottom sediments, water and benthic macroinvertebrates were sampled in several water systems across The Netherlands. The variance partitioning method is used to quantify the relative contributions of food and environmental variables in structuring the benthic macroinvertebrate community structure.It is assumed that detritivores show a significant relationship with sediment food variables and carnivores and herbivores do not. The results of the variance partitioning method with data sets containing only detritivores, herbivores or carnivores confirm this assumption. This indicates that the variance partitioning method is a useful tool for analyzing the impact of different groups of variables in complex situations. Approximately 45% of the total variation in the macroinvertebrate community structure could be explained by variables included in the analyses. The variance partitioning method shows that sediment food variables contributed significantly to the total variation in the macroinvertebrate dataset. The relative importance of food depends on the intensity of other environmental factors and is lower on broad spatial scales than on smaller scales.The results of the partitioning depend on the selected variables that are included in the analyses. The method becomes problematic in case variables from different groups of variables (e.g. one food variable and one environmental variable) have a high inflation factor and thus are collinear. The choice of the variable that is left out impacts the variance allocated to the different groups of variables.The variance partitioning method was able to detect the spatial scale dependent contribution of food variables in structuring macroinvertebrate communities. This spatial scale dependency can also be caused by the size, the composition, and the heterogeneity of the dataset. Performing extra analyses in which specific samples are removed from the original dataset can give insight in under- or overestimation of the impact of certain factors and offers the possibility to test the robustness of the obtained results.  相似文献   

10.
  1. According to metacommunity theories, the structure of natural communities is the result of both environmental filtering and spatial processes, with their relative importance depending on factors including local habitat characteristics, functional features of organisms, and the spatial scale considered. However, few studies have explored environmental and spatial processes in riverine systems at local scales, explicitly incorporating spatial coordinates into multi-taxa distribution models. To address this gap, we conducted a small-scale study to discriminate between abiotic and biotic factors affecting the distribution of aquatic macroinvertebrates, applying metacommunity concepts.
  2. We studied a mountain section in each of three perennial streams within the Po River Basin (northern Italy). We sampled macroinvertebrates both in summer and winter, using specific in situ 50-point random sampling grids. Environmental factors, including benthic organic matter (BOM), flow velocity, water depth, and substrate were recorded together with spatial coordinates for each sampling point. The relationships between community metrics (taxon richness, abundance, biomass, biomass–abundance ratio, and functional feeding groups) and explanatory variables (environmental and spatial) were assessed using generalised additive models. The influence of the explanatory variables on community structure was analysed with joint species distribution models.
  3. Environmental variables—primarily BOM—were the main drivers affecting community metrics, whereas the effects of spatial variables varied among metrics, streams, and seasons. During summer, community structure was strongly affected by BOM and spatial position within the riverbed, the latter probably being a proxy for mass effects mediated by biotic and stochastic processes. In contrast, community structure was mainly shaped by hydraulic variables in winter.
  4. Using macroinvertebrate communities as a model group, our results demonstrate that metacommunity concepts can explain small-scale variability in community structure. We found that both environmental filtering and biotic processes shape local communities, with the strength of these drivers depending on the season. These insights provide baseline knowledge that informs our understanding of ecological responses to environmental variability in contexts including restoration ecology, habitat suitability modelling, and biomonitoring.
  相似文献   

11.
Site-specific temporal trends in algae, benthic invertebrate, and fish assemblages were investigated in 15 streams and rivers draining basins of varying land use in the south-central United States from 1993–2007. A multivariate approach was used to identify sites with statistically significant trends in aquatic assemblages which were then tested for correlations with assemblage metrics and abiotic environmental variables (climate, water quality, streamflow, and physical habitat). Significant temporal trends in one or more of the aquatic assemblages were identified at more than half (eight of 15) of the streams in the study. Assemblage metrics and abiotic environmental variables found to be significantly correlated with aquatic assemblages differed between land use categories. For example, algal assemblages at undeveloped sites were associated with physical habitat, while algal assemblages at more anthropogenically altered sites (agricultural and urban) were associated with nutrient and streamflow metrics. In urban stream sites results indicate that streamflow metrics may act as important controls on water quality conditions, as represented by aquatic assemblage metrics. The site-specific identification of biotic trends and abiotic–biotic relations presented here will provide valuable information that can inform interpretation of continued monitoring data and the design of future studies. In addition, the subsets of abiotic variables identified as potentially important drivers of change in aquatic assemblages provide policy makers and resource managers with information that will assist in the design and implementation of monitoring programs aimed at the protection of aquatic resources.  相似文献   

12.
The macroinvertebrate species and assemblages of headwater streams of the River Tyne catchment in northern England were classified and their relationship with environmental variables based on stream structure, water acidity, distance from source and land cover investigated using constrained ordination and logistic regression. Fuzzy classification of data from 322 stream sites generated five assemblages. Stream structure, quantified as an exposure index, was found to be the most important environmental variable, with water acidity also important. Distance from source and land cover had less influence on species and assemblage distribution. A considerable amount of variation in assemblage distribution was explained using a two-variable logistic regression with stream structure (exposure index) and water acidity (pH) in a template. Site structure and water acidity appeared to be related to drift, geology and topography with little anthropogenic influence. The applicability of the habitat template concept for explaining the distribution of stream macroinvertebrates is discussed.  相似文献   

13.
Coal mining in central Appalachia USA causes increased specific conductance in receiving streams. Researchers have examined benthic macroinvertebrate community structure in such streams using temporally discrete measurements of SC and benthic macroinvertebrates; however, both SC and benthic macroinvertebrate communities exhibit intra-annual variation. Twelve central Appalachian headwater streams with reference quality physical habitat and physicochemical conditions (except for elevated SC in eight streams) were sampled ≤fourteen times each between June 2011 and November 2012 to evaluate benthic macroinvertebrate community structure. Specific conductance was recorded at each sampling event and by in situ data loggers. Streams were classified by mean SC Level (Reference, 17–142 μS/cm; Medium, 262–648 μS/cm; and High, 756–1535 μS/cm). Benthic macroinvertebrate community structure was quantified using fifteen metrics selected to characterize community composition and presence of taxa from orders Ephemeroptera, Plecoptera, and Trichoptera. Metrics were analyzed for differences among SC Levels and months of sampling. Reference streams differed significantly from Medium-SC and High-SC streams for 11 metrics. Medium-SC streams had the most metrics exhibiting significant differences among months. Relative abundances of Plecoptera and Trichoptera were not sensitive to SC, as the families Leuctridae and Hydropsychidae exhibited increased relative abundance (vs. reference) in streams with elevated SC. In contrast, Ephemeroptera richness and relative abundance were lower, relative to reference, in elevated-SC streams despite increased relative abundance of Baetidae. Temporal variability was evident in several metrics due to influence by taxa with seasonal life cycles. These results demonstrate that benthic macroinvertebrate communities in elevated-SC streams are altered from reference condition, and that metrics differ in SC sensitivity. The time of year when samples are taken influenced measured levels and differences from reference condition for most metrics.  相似文献   

14.
Leonard Sandin 《Ecography》2003,26(3):269-282
Spatial scale, e.g. from the stream channel, riparian zone, and catchment to the regional and global scale is currently an important topic in running water management and bioassessment. An increased knowledge of how the biota is affected by human alterations and management measures taken at different spatial scales is critical for improving the ecological quality of running waters. However, more knowledge is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of running water organisms. In this study, benthic macroinvertebrate data from 628 randomly selected streams were analysed for geographical and environmental relationships. The dataset also included 100 environmental variables, from local measures such as in-stream substratum and vegetation type, catchment vegetation and land-use, and regional variables such as latitude and longitude. Cluster analysis of the macroinvertebrate data showed a continuous gradient in taxonomic composition among the cluster groups from north to south. Both locally measured variables (e.g. water chemistry, substratum composition) and regional factors (e.g. latitude, longitude, and an ecoregional delineation) were important for explaining the variation in assemblage structure and taxon richness for stream benthic macroinvertebrates. This result is of importance when planning conservation and management measurements, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g. global warming) will affect running water ecosystems.  相似文献   

15.
It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.  相似文献   

16.
There is still no assessment of the impact of sediment chemicals and environmental conditions on macroinvertebrates at the scale of the St. Lawrence River. In order to assess these impacts in the fluvial section of the St. Lawrence River including the Montreal harbour, the community structure of macroinvertebrates using different taxonomic aggregations (genus and family) and taxa attributes (abundance, presence–absence, indicator taxa) was assessed. The goal of the study was to determine the indicator taxa of macroinvertebrates along the fluvial continuum and relate changes in macroinvertebrate community to sediment chemical conditions and environmental characteristics of habitats using variance partitioning. This study also evaluated which taxonomic level and taxa attributes of macroinvertebrates were the most suitable for bioassessment of quality of sediments and habitat environment in the St. Lawrence River. Four different macroinvertebrate assemblages were found distributed along the fluvial continuum using either abundance or presence–absence data and genus or family levels. Indicator taxa characteristic of the different macroinvertebrate communities were associated with the sediment contamination gradient. However, habitat environmental characteristics (water masses, sulphur and DOC in sediments) had more influence on macroinvertebrate assemblages than sediment contamination. Our study confirms that family level analysis can give information comparable to the genus level analysis using presence–absence or abundance of macroinvertebrates, yet a higher number of indicator taxa were detected at the genus level.  相似文献   

17.
The aim of the present study was to estimate the extent to which macroinvertebrate assemblages in a headwater stream are determined by environmental conditions and temporal dynamics. Six mesohabitats defined by substratum were sampled monthly throughout one year, environmental conditions at each sampling point being precisely described. Environmental variables could be truncated into two main gradients related to (a) the availability of food and space resources (CPOM) and (b) hydraulic conditions. The response of the macroinvertebrate assemblage to the environmental gradients and temporal dynamics were analyzed using GAM and (p)RDA. Twice as high portion of variance in the faunal data was attributed to environmental gradients compared to temporal dynamics. Total abundance, as well as the abundance of almost all feeding groups, was dependent on the availability of food and space resources (CPOM), while their proportions were determined by the quality of food resources driven by hydraulic conditions. Temporal dynamics was of lower importance. Our results suggest the role of CPOM be crucial in woodland headwater streams, as it greatly enhances habitat quality, serving both as a food source to dominant shredders and a space source to most macroinvertebrates.  相似文献   

18.
Hydraulic-habitat and biological data were integrated within a twofold-purpose study: (i) to investigate the response of freshwater macroinvertebrates to a rainfall-induced high flow event of moderate magnitude and (ii) to derive hydroecological relationships between habitat variability and macroinvertebrate microdistribution. 142 microhabitats (unique combinations of flow velocity, water depth and substrate type) allocated in four sites of no or very minor anthropogenic influence were sampled and analyzed, before and after the event. Freshwater macroinvertebrates were additionally collected and specific community metrics were derived. To identify possible pre- and post- impact benthic community differences, independent sample t-tests were applied, while Boosted Regression Tree models were developed to quantify the response of macroinvertebrates to flow alteration. Macroinvertebrate abundance, taxonomic richness, EPT richness and diversity decreased significantly by 90%, 60%, 50% and 25% respectively between the pre- and post- impact microhabitats. The relative abundance of macroinvertebrate predators and passive filter feeders increased after the event, mainly in specific substrate types (boulders and large stones), which served as flow refugia, maintaining less degraded (compared to finer substrates), still heavily impacted, benthic communities. According to the hydroecological analysis, the high flow event exerted the strongest impact on all macroinvertebrate metrics. Optimal (suitable) ranges of the hydraulic-habitat variables for benthic macroinvertebrates were identified (optimal flow velocity from 0.3 m/s to 0.7 m/s, optimal water depth at 0.2 m), while boulders and large stones were the most suitable substrate types. The aforementioned data provide valuable information for the provisioning of biologically-derived environmental flows and an essential input of hydrodynamic habitat models to facilitate the selection of the optimal environmental flow scenario towards ensuring the integrity of aquatic ecosystems downstream of anthropogenic activities provoking hydrological alteration.  相似文献   

19.
1. During the past two decades, understanding of the structure and function of glacier‐fed stream ecosystems at temperate latitudes has increased substantially. In contrast, information on their tropical counterparts is very limited. We studied three neighbouring glacier‐fed streams in the tropical Andes of Ecuador. Our main goals were (i) to determine overall longitudinal patterns in density, taxon richness and the composition of macroinvertebrate assemblages and driving factors in equatorial glacial streams and (ii) to examine variability among replicate streams in faunal metrics and assemblages, and stream‐specific effects of supposed environmental key factors. 2. We measured four geographical and 17 environmental factors and collected five Surber samples (500 cm2) of macroinvertebrates at each of nine sites, three sites along three streams. The streams were located 1–5 km apart. In each stream, the three sites were placed at comparable distances from the glacier and were grouped as ‘upper’ (50–200 m), ‘middle’ (1.5 km) and ‘lower’ sites (3.5–5.6 km). 3. In total, 2200 individuals (64% chironomids) were collected and 47 taxa (30 dipterans, 18 of these Chironomidae) identified. Density ranged from 176 to 372 ind. m?2, and the number of taxa ranged from 2 to 6 at the upper sites and 868–3044 ind. m?2 and 21–27 taxa at the lower sites. Density, number of taxa, rarefied richness and axis‐1 coordinates from a MDS ordination increased logarithmically with distance from the glacier. These faunal metrics were equally related to altitude and glacier per cent of catchment and correlated with maximum conductivity, mean temperature, mean daily maximum temperature and a channel stability index. As expected, the mean difference in distance decay in similarity was higher at the upper (47% km?1) than at the lower reaches (20% km?1) of the streams. 4. The number of taxa varied among sites within the upper and middle groups, but not among the lower sites. In contrast, but in accordance with our expectation, assemblage composition did not differ among upper sites but did so at middle and lower sites, following a supposed decrease in environmental harshness along the streams. Relationships between faunal metrics and the four environmental variables mean temperature, the stability index, chlorophyll a and coarse particulate organic matter also varied among the three streams. Generalised linear model analyses revealed that temperature interacted with stream on macroinvertebrate density, while chlorophyll a had a significant effect on the number of taxa in interaction with stream and stability. 5. The basic predictions of the Milner et al. (2001a) , model regarding longitudinal faunal patterns and temperature and stability as main driving factors were met by our three replicate equatorial glacial streams. Qualitative departures from the model were mainly because of zoogeographical differences. We demonstrated that variability in assemblages between comparable sites in closely situated streams was considerable, and the effect of key environmental factors varied among streams and interacted with other factors. Quantifying spatial variation in benthic assemblages may help us foresee possible consequences for biodiversity as a result of glacial retreat.  相似文献   

20.
Kaller  M.D.  Hartman  K.J. 《Hydrobiologia》2004,518(1-3):95-104
When land use practices alter natural hydrologic and sediment delivery regimes, the effects usually are negative to macroinvertebrates. We hypothesized a threshold level of fine sediment accumulation in the substrate may exist where benthic macroinvertebrate abundance and diversity will be significantly reduced. We surveyed seven Appalachian streams with different levels of substrate fine sediment twice yearly from fall 1998 to spring 2000. Three riffles (with 2 replicates each) were sampled with a 0.25 mm Surber sampler in each season and stream. Simple linear regression was used to test relationships between substrate size classes and metrics, and nested ANOVA was used to test macroinvertebrate differences among streams. Consistent negative relationships with the finest substrate particles (<0.25 mm) were observed with EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa richness. In seasons of normal hydrology, EPT taxa richness significantly decreased (p<0.05) in streams where fine substrate particles (<0.25 mm) exceeded 0.8–0.9% of riffle substrate composition. In drought seasons, fine sediment (<0.25 mm) exceeded 0.8–0.9% in most surveyed streams, lowering macroinvertebrate diversity in all streams. In these streams, a threshold for EPT diversity appears to be in excess of 0.8–0.9% fine sediment (<0.25 mm) substrate accumulation. We suggest similar threshold levels exist in other streams where macroinvertebrate taxa are altered with potential effects on trophic webs and nutrient processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号