首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Applications of transdominant mutants of human immunodeficiency virus type 1 (HIV-1) regulatory proteins, especially Rev mutant, have been attempted for gene therapy against AIDS, because the Rev protein is essential for viral replication. We have previously reported that a mutant Rev protein (dRev) lacking its nucleolar targeting signal remained out of nuclei in expressed cells and strongly inhibited the function of Rev. To investigate the effects of dRev on HIV-1 replication, we established several dRev-expressing human cell lines with two different vector systems and examined virus production in these cells. An HIV-1-derived vector containing drev cDNA was constructed and introduced into CD4-positive HeLa cells and cells of the human T-cell line CCRF-CEM (CEM). In dRev-expressing HeLa cells, virus replication, syncytium formation, and cell death caused by HIV-1 infection were remarkably suppressed, and the same vector also conferred a resistant phenotype on CEM cells. The production was also suppressed in CEM cells containing the drev gene driven by a cytomegalovirus promoter. In addition, we found that dRev did not cause nucleolar dysfunction in a transient assay, in contrast to other transdominant mutants and wild-type Rev. Since dRev cannot migrate into the nuclei, it is expected not to interfere with nuclear/nucleolar functions of the host cell. We conclude that dRev is one promising candidate as an antiviral molecule for gene therapy against AIDS.  相似文献   

2.
Transduction of hematopoietic stem cells with genes that inhibit human immunodeficiency virus (HIV) replication has the potential to reconstitute immune function in individuals with AIDS. We evaluated the ability of an autoregulated gene, antitat, to inhibit replication of simian immunodeficiency virus (SIV) and HIV type 1 (HIV-1) in hematopoietic cells derived from transduced progenitor cells. The antitat gene expresses an antiviral RNA encoding polymeric Tat activation response elements in combination with an antisense tat moiety under the control of the HIV-1 long terminal repeat. CD34+ hematopoietic progenitor cells were transduced with a retroviral vector containing the antitat gene and then cultured under conditions that support in vitro differentiation of T cells or macrophage-like cells. Rhesus macaque CD4+ T cells and macrophage-like cells derived from CD34+ bone marrow cells transduced with the antitat gene were highly resistant to challenge with SIV, reflecting a 2- to 3-log reduction in peak SIV replication compared with controls. Similarly, human CD4+ T cells derived from CD34+ cord blood cells transduced with antitat were also resistant to infection with HIV-1. No evidence for toxicity of the antitat gene was observed in any of five different lineages derived from transduced hematopoietic cells. These results demonstrate that a candidate therapeutic gene introduced into hematopoietic progenitor cells can retain the ability to inhibit AIDS virus replication following T-cell differentiation and support the potential use of the antitat gene for stem cell gene therapy.  相似文献   

3.
C Ulich  D Harrich  P Estes    R B Gaynor 《Journal of virology》1996,70(7):4871-4876
Mutation of either of two critical human immunodeficiency virus type 1 (HIV-1) regulatory proteins, Tat and Rev, results in marked defects in viral replication. Thus, inhibition of the function of one or both of these proteins can significantly inhibit viral growth. In the present study, we constructed a novel transdominant Tat mutant protein and compared its efficiency in inhibiting HIV-1 replication with that of transdominant mutant Rev M10 when these proteins were stably expressed either alone or in combination in T-lymphocyte cell lines. The transdominant Tat mutant protein alone resulted in a modest inhibition of HIV replication, but it was able to enhance the ability of the M10 Rev mutant protein to inhibit HIV-1 replication. These results suggest a possible synergistic effect of these transdominant mutant proteins in inhibiting HIV-1 replication.  相似文献   

4.
S F Ding  J Noronha    S Joshi 《Nucleic acids research》1998,26(13):3270-3278
Retroviral vectors were engineered to express either sense (MoTiN-TRPsie+) or sense and antisense (MoTN-TRPsie+/-) RNAs containing the human immunodeficiency virus type-1 (HIV-1) trans -activation response (TAR) element and the extended packaging (Psie) signal. The Psie signal includes the dimer linkage structure (DLS) and the Rev response element (RRE). Amphotropic vector particles were used to transduce a human CD4+ T-lymphoid (MT4) cell line. Stable transductants were then tested for sense and antisense RNA production and susceptibility to HIV-1 infection. HIV-1 production was significantly decreased in cells transduced with MoTiN-TRPsie+ and MoTN-TRPsie+/-vectors. Efficient packaging of sense and most remarkably of antisense RNA was observed within the virus progeny. Infectivity of this virus was significantly decreased in both cases, suggesting that the interfering RNAs were co-packaged with HIV-1 RNA. Vector transduction was not expected to occur and was not observed. Inhibition of HIV-1 replication was also demonstrated in human peripheral blood lymphocytes transduced with retroviral vectors expressing antisense RNA. These results suggest that (i) both sense and antisense RNAs were co-packaged with HIV-1 RNA, (ii) the co-packaged sense and antisense RNAs inhibited virus infectivity and (iii) the co-packaged sense and antisense RNAs were not transduced. Sense and antisense RNA-based strategies may also be used to co-package other interfering RNAs (e.g. ribozymes) to cleave HIV-1 virion RNA.  相似文献   

5.
The rate of viral replication appears to play a pivotal role in human immunodeficiency virus type 1 (HIV-1) pathogenesis and disease progression as it outstrips the capacity of the immune system to respond. Important cellular sites for HIV-1 production include T lymphocytes and tissue macrophages. Antiviral strategies, including newer treatment modalities such as gene therapy of HIV-1-susceptible cell populations, must be capable of engendering durable inhibitory effects to HIV-1 replication in both of these primary cell types in order to be effective. Among the potential genetic targets for intervention in the HIV-1 life cycle, the Rev regulatory system, consisting of Rev and its binding site, the Rev-responsive element (RRE), stands out as particularly attractive. Rev is essential for maintaining the stability of the viral genomic RNA as well as viral mRNAs encoding key structural and regulatory proteins. Moreover, it exhibits favorable threshold kinetics, in that Rev concentrations must rise above a critical level to exert their effect. To disable Rev function, primary T cells or macrophages were transduced with anti-Rev single-chain immunoglobulin (SFv) or RRE decoy genes either singly or in combination by employing adeno-associated virus vectors and then challenged with HIV-1. By directing both a protein and a nucleic acid against the normal interaction between Rev and the RRE, this genetic antiviral strategy effectively inhibited infection by either clinical or laboratory virus isolates. These results provide a framework for novel interventions to reduce virus production in the infected host.  相似文献   

6.
7.
Lack of disease in long-term nonprogressors with human immunodeficiency virus type 1 (HIV-1) infection was strongly associated with very low copy numbers of HIV-1 DNA and RNA in peripheral blood mononuclear cells and plasma and the presence of high levels of anti-HIV-1 CD8+ memory cytotoxic T lymphocytes specific for Gag, Pol, and Env, compared with levels present in intermediate and advanced progressors. CD8+ memory cytotoxic T lymphocytes may have an important role in controlling HIV-1 replication and preventing disease in long-term nonprogressors.  相似文献   

8.
A human immunodeficiency virus type 1 (HIV-1)-based vector expressing an antisense RNA directed against HIV-1 is currently in clinical trials. This vector has shown a remarkable ability to inhibit HIV-1 replication, in spite of the fact that therapeutic use of unmodified antisense RNAs has generally been disappointing. To further analyze the basis for this, we examined the effects of different plasmid-based HIV-1 long-terminal-repeat-driven constructs expressing antisense RNA to the same target region in HIV-1 but containing different export elements. Two of these vectors were designed to express antisense RNA containing either a Rev response element (RRE) or a Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). In the third vector, no specific transport element was provided. Efficient inhibition of HIV-1 virus production was obtained with the RRE-driven antisense RNA. This construct also efficiently inhibited p24 production from a pNL4-3 provirus that used the MPMV CTE for RNA export. In contrast, little inhibition was observed with the constructs lacking an RRE. Furthermore, when the RRE-driven antisense RNA was redirected to the Tap/Nxf1 pathway, utilized by the MPMV CTE, through the expression of a RevM10-Tap fusion protein, the efficiency of antisense inhibition was greatly reduced. These results indicate that efficient inhibition requires trafficking of the antisense RNA through the Rev/RRE pathway. Mechanistic studies indicated that the Rev/RRE-mediated inhibition did not involve either nuclear retention or degradation of target mRNA, since target RNA was found to export and associate normally with polyribosomes. However, protein levels were significantly reduced. Taken together, our results suggest a new mechanism for antisense inhibition of HIV mediated by Rev/RRE.  相似文献   

9.
10.
11.
Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4+ lymphocytes and macrophages and causes AIDS in humans. Retroviral vectors allowing neomycin phosphotransferase (npt) gene expression were engineered to express 5' sequences of HIV-1 RNA in the antisense or sense orientation and used to transform the human CD4+ lymphocyte-derived MT4 cell line. Cells expressing antisense or sense RNA to the HIV-1 tat mRNA leader sequence, as part of the 3' untranslated region of the npt mRNA, remained sensitive to HIV-1 infection. In contrast, resistance to HIV-1 infection was observed in cells expressing antisense RNA to the HIV-1 primer-binding site or to the region 5' to the primer-binding site as part of the 3' region of the npt mRNA. Cells expressing the tat mRNA leader sequence in the sense orientation as a precise replacement of the 5' untranslated region of npt mRNA were also resistant to HIV-1. These results indicate that sense and antisense approaches can be used to interfere with HIV-1 multiplication.  相似文献   

12.
T lymphocytes expressing the CD8 surface antigen block HIV replication in CD4+ peripheral blood cells from HIV-infected individuals. We report here that CD4+ cells from HIV seronegative donors, when infected in vitro with HIV, also do not replicate virus when cocultured with CD8+ T cells from HIV-infected individuals. CD8+ cells from HIV-uninfected donors did not show this effect on virus replication. HLA-restriction of the antiviral response was not observed, and virus-containing cells were not eliminated from culture. The antiviral activity was broadly cross-reactive, as CD8+ cells from individuals infected only with HIV-1 suppressed the replication of diverse strains of HIV-1 and HIV-2, as well as the simian immunodeficiency virus. This ability of CD8+ cells to control HIV replication could play an important role in the maintenance of an asymptomatic state in HIV-infected individuals.  相似文献   

13.
Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239 gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.  相似文献   

14.
Despite multiple, high-risk sexual exposures, some individuals remain uninfected with human immunodeficiency virus type 1 (HIV-1). CD4+ lymphocytes from these individuals are less susceptible to infection in vitro with some strains of HIV-1, suggesting that the phenotype of the virus may influence its ability to interact with certain CD4+ cells. In the present study, we examined the susceptibility of CD4+ T lymphocytes and macrophages from two exposed uninfected individuals (EU2 and EU3) to infection with a panel of biologically cloned isolates of HIV-1 having either a non-syncytium-inducing (NSI) or a syncytium-inducing (SI) phenotype. Our results indicate that CD4+ T lymphocytes from EU2 and EU3 are resistant to infection with NSI isolates of HIV-1 but are susceptible to infection with primary SI isolates. In addition, we found that macrophages from EU2 and EU3 are resistant to infection with both NSI and SI isolates. The latter finding was confirmed by using several uncloned NSI and SI isolates obtained from patients during acute HIV-1 infection. In further experiments, env clones encoding glycoproteins characteristic of NSI or SI viruses were used in single-cycle infectivity assays to evaluate infection of CD4+ lymphocytes and macrophages from EU2 and EU3. Consistent with our previous results, we found that macrophages from these individuals are resistant to infection with NSI and SI env-pseudotyped viruses, while CD4+ T lymphocytes are resistant to NSI, but not SI, pseudotyped viruses. Overall, our results demonstrate that CD4+ cells from two exposed uninfected individuals resist infection in vitro with primary, macrophage-tropic, NSI isolates of HIV-1, which is the predominant viral phenotype found following HIV-1 transmission. Furthermore, infection with NSI isolates was blocked in both CD4+ T lymphocytes and macrophages from these individuals, suggesting that there may be a common mechanism for resistance in both cell types.  相似文献   

15.
Srinivasakumar N 《PloS one》2011,6(12):e28462
The use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the production of vector stocks, we showed the utility of this system for delivery of Rev M10, a dominant-negative mutant of HIV-1 Rev, into T-cells. Here, we investigated the use of RNA transport elements from Mason-Pfizer monkey virus or MPMV for the creation of high-titered Rev-free HIV-1-based packaging systems. The HIV-1 gag/pol expression constructs containing one or more copies of MPMV constitutive RNA transport element (CTE) were used to package similarly modified gene-transfer vectors in the presence or absence of Rev. An inverse correlation between the number of CTE modules and Rev dependency was noted for vector stock production. While packaging systems containing multiple CTEs were resistant to exogenously expressed Rev M10, the titers of vectors encoding Rev M10 were nevertheless reduced in comparison to vectors encoding only green fluorescent protein (GFP). In contrast, a gene transfer vector encoding the Rev M10 transgene and containing both RNA transport elements exhibited almost no loss in titer in comparison to a corresponding vector encoding only GFP. The optimized Rev-independent gene delivery system was used for delivery of Rev M10 transgene into T-lymphocytes. Upon challenge in single round infection assays with HIV-1, the modified T-cells produced fewer virus particles than control cells expressing GFP. This Rev-free packaging system may prove useful for targeting the Rev-RRE-Crm1 nucleocytoplasmic RNA transport pathway for inhibiting HIV replication.  相似文献   

16.
17.
Genetic therapies against HIV   总被引:1,自引:0,他引:1  
Rossi JJ  June CH  Kohn DB 《Nature biotechnology》2007,25(12):1444-1454
Highly active antiretroviral therapy prolongs the life of HIV-infected individuals, but it requires lifelong treatment and results in cumulative toxicities and viral-escape mutants. Gene therapy offers the promise of preventing progressive HIV infection by sustained interference with viral replication in the absence of chronic chemotherapy. Gene-targeting strategies are being developed with RNA-based agents, such as ribozymes, antisense, RNA aptamers and small interfering RNA, and protein-based agents, such as the mutant HIV Rev protein M10, fusion inhibitors and zinc-finger nucleases. Recent advances in T-cell-based strategies include gene-modified HIV-resistant T cells, lentiviral gene delivery, CD8(+) T cells, T bodies and engineered T-cell receptors. HIV-resistant hematopoietic stem cells have the potential to protect all cell types susceptible to HIV infection. The emergence of viral resistance can be addressed by therapies that use combinations of genetic agents and that inhibit both viral and host targets. Many of these strategies are being tested in ongoing and planned clinical trials.  相似文献   

18.
Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1.  相似文献   

19.
Primary CD4(+) T lymphocytes, supporting in vitro human immunodeficiency virus type 1 (HIV-1) replication, are destined to die by apoptosis. We explored the initial molecular events that act upstream from mitochondrial dysfunction in CD4(+) T lymphocytes exposed to the HIV-1(LAI) strain. We tracked by immunofluorescence the cells expressing the p24 viral antigen and used Percoll density gradients to isolate a nonapoptotic CD4(+) T-cell subset with a high inner mitochondrial transmembrane potential (DeltaPsim) but no outer mitochondrial membrane (OMM) rupture. In most p24(+) (but not bystander p24(-)) cells of this subset, the lysosomes were undergoing limited membrane permeabilization, allowing the lysosomal efflux of cathepsins (Cat) to the cytosol. This was also induced by HIV-1 isolates from infected patients. Using pepstatin A to inhibit Cat-D enzymatic activity and Cat-D small interfering RNA to silence the Cat-D gene, we demonstrate that once released into the cytosol, Cat-D induces the conformational change of Bax and its insertion into the OMM. Inhibition of Cat-D activity/expression also conferred a transient survival advantage upon productively HIV-1-infected cells, indicating that Cat-D is an early death factor. The transfection of activated CD4(+) T lymphocytes with a Nef expression vector rapidly induced the permeabilization of lysosomes and the release of Cat-D, with these two events preceding OMM rupture. These results reveal a previously undocumented mechanism in which Nef acts as an internal cytopathic factor and strongly suggest that this viral protein may behave similarly in the context of productive HIV-1 infection in CD4(+) T lymphocytes.  相似文献   

20.
We have studied retroviral transgene expression in primary human lymphocytes. Our data demonstrate that transgene expression is high in activated primary CD4+ T cells but significantly decreased in mitotically quiescent cells. Incorporation of a DNA fragment from the scaffold attachment region (SAR) of the human beta interferon gene into the vector improved transgene expression, particularly in quiescent cells. The SAR element functioned in an orientation-dependent manner and enhanced expression of Moloney murine leukemia virus- and murine embryonic stem cell-based vectors. Clonal analysis of transduced T cells showed that the SAR sequence did not confer position-independent expression on a transgene but rather prevented the decrease of expression when cells became quiescent. The SAR sequence also enhanced transgene expression in T cells generated from retrovirally transduced CD34-enriched hematopoietic progenitor-stem cells in a SCID-hu thymus-liver mouse model. We have used the SAR-containing retroviral vector to express the RevM10 gene, a trans-dominant mutant of the human immunodeficiency virus type 1 (HIV-1) Rev gene. Compared to a standard retroviral vector, the SAR-containing vector was up to 2 orders of magnitude more efficient in inhibiting replication of the HIV-1 virus in infected CD4+ peripheral blood lymphocyte populations in vitro. This is the first demonstration that SAR elements can be used to improve retroviral vector expression in human primary T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号