首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-stimulated insulin release from rat pancreas is known to be blunted by aging. In the present study, we examined the effect of aging on insulin release induced by various secretagogues using the isolated perfused pancreas of female rats. Insulin release from the perfused pancreas in response to 16.7 mM glucose in 8-month-old rats (older rats) was much less than that in 2-month-old rats (young rats). The first phase of insulin release after glucose stimulation was attenuated in older rats. The addition of 0.1 mM 3-isobutyl-1-methylxanthine (IBMX) potentiated glucose-induced insulin secretion in both groups of rats. However, the second phase of insulin secretion in older rats was lower than that in younger rats. The phorbol ester 12-O-tetradecanoyl phorbol ester (TPA, 200 nM) enhanced both the first and the second phases of insulin release induced by glucose in both groups of rats. The amount of first phase insulin release induced by TPA with glucose in young rats was greater than that in older rats, whereas the second phase of insulin release was similar in both groups of rats. On the other hand, tolbutamide (200 uM) similarly stimulated the first phase of insulin release in both age groups of rat. In addition, the amount of cumulative insulin secretion induced by tolbutamide during the second phase was slightly but significantly greater in older rats than in young controls. Insulin content in the pancreas was significantly greater in older rats than in young rats and increased after the stimulation with TPA and tolbutamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In order to elucidate the possible role of C-kinase in exaggerated insulin release in pregnancy, the effects of phorbol ester TPA and a C-kinase inhibitor H-7 were investigated using the isolated perfused pancreas from nonpregnant and pregnant rats. At the termination of perfusion, the insulin content of the perfused pancreas was determined to estimate insulin biosynthesis. Insulin release from the perfused pancreas was markedly augmented by 20 nM TPA in the presence of 4.4 mM glucose in pregnant rats, but not in nonpregnant rats. When glucose concentrations in the perfusate were raised to 16.7 mM, insulin release from the perfused pancreas was profoundly enhanced in pregnant rats. TPA further augmented insulin release, but the insulin content was not affected by TPA. In contrast to the considerable effect of TPA in the presence of 4.4 mM glucose, the potentiating effect of TPA on insulin release was rather weaker in pregnant than in non-pregnant rats in the presence of 16.7 mM glucose. The release of insulin induced by 16.7 mM glucose was inhibited by the addition of 100 microM H-7 in nonpregnant rats, whereas insulin release from pregnant rat pancreases was not altered. Thus, the effect of TPA and H-7 on insulin release can be more clearly observed in the beta-cells of nonpregnant rats than those of pregnant ones when maximal concentrations of glucose are used as a stimulant. Exaggerated insulin release caused by glucose in pregnancy may be due to already fully activated C-kinase in the beta-cells.  相似文献   

3.
The effect of octanoic acid (1.5 mM) on insulin secretion in 4.4 and 16.7 mM glucose stimulation has been studied in rat's isolated and perfused pancreas. The absence of octanoic acid does not produce any significant insulin secretion increase in response to 4.4 mM glucose infusion, whereas its presence produces a significant insulinic response of a monophasic nature. Both in the presence and absence of octanoic acid, the 16.7 mM glucose-stimulation produces a biphasic insulin secretion. The octanoic acid enhances both the first and the second phase of insulin secretion. The present results show that octanoic acid clearly potentiates the insulin secretion in response to 4.4 mM and 16.7 mM glucose.  相似文献   

4.
Porcine diazepam-binding inhibitor (pDBI) is a novel peptide that has been isolated from the small bowel of the pig, and that occurs also in the islet D-cells. We have studied its effects on hormone release in vitro from the endocrine pancreas of the rat. In isolated islets, pDBI (10(-9)-10(-6)M) did not affect basal insulin release at 3.3 mM glucose, whereas stimulated release at 8.3 mM glucose was dose-dependently suppressed by 32-69% (P less than 0.01). Furthermore, insulin secretion stimulated by either 16.7 mM glucose or 1 mM IBMX (3-isobutyl-1-methylxanthine) or 1 micrograms/ml glibenclamide was suppressed by pDBI at 10(-8) M (by 28-30%, P less than 0.05) and 10(-7) M (by 43-47%, P less than 0.01). In contrast, islet insulin secretion induced by 20 mM arginine was unaffected by these concentrations of pDBI. In the perfused rat pancreas, pDBI (10(-8) M) enhanced by 30% (P less than 0.05) the first phase (0-5 min) of arginine-stimulated insulin release, whereas the second phase (5-20 min) was unchanged. Moreover, pDBI suppressed by 28% (P less than 0.05) the second phase of arginine-induced glucagon release. Arginine-induced somatostatin release was not significantly affected by the peptide. Since pDBI immunoreactivity has been localized also to islet D-cells, the present results suggest that pDBI may act as a local modulator of islet hormone release.  相似文献   

5.
Neural regulation of insulin secretion of in situ innervated perfused pancreases was evaluated in younger (5 months) and older (26 months) Fischer 344 rats. In one protocol, the central nervous system (CNS) was intact throughout the entire 120-min perfusion period. In the other protocol, the CNS was intact only through the first 20 min of the 120-min perfusion, whereupon the CNS was ablated via anoxia. In both protocols, a modified Krebs-Ringer buffer containing glucose at 200 mg/dl was perfused through the pancreas at a rate of 4.8 ml/min by using a constant flow perfusion pump. Insulin secretion (ng.min-1) of younger and older CNS-intact rats did not differ significantly. After the ablation of the neural regulation of the pancreas, glucose-stimulated insulin secretion of younger rats was significantly lower, relative to the average insulin secretion before ablation (i.e., min 1-20) of CNS-intact animals. This would suggest that the nature of neural control of insulin secretion in younger rats is potentiation. In contrast, insulin secretion of older CNS-ablated animals was similar, or generally increased, when the data were expressed either on an absolute or a relative basis to preablation values, respectively. Thus, these data suggest that the neural regulation of glucose-stimulated insulin secretion in younger versus older rats is significantly different.  相似文献   

6.
The effects of sodium salicylate, a prostaglandin synthesis inhibitor, on glucose-induced secretion of insulin and glucagon by the isolated perfused rat pancreas have been studied. Sodium salicylate inhibited both basal (2.8 mM glucose) and stimulated (16.7 mM glucose) insulin release in a dose dependent manner (1, 5 and 10 mM). This inhibition is not interpretable in terms of a simple inhibition of cyclooxygenase by sodium salicylate. Basal glucagon release was not changed by 1 mM sodium salicylate but the latter partially blocked its inhibition by 16.7 mM glucose. Higher doses of sodium salicylate (5 and 10 mM) inhibited basal glucagon secretion without affecting its response to 16.7 mM glucose. These findings suggest a predominant stimulatory action of endogenous prostaglandins on glucagon release.  相似文献   

7.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

8.
To determine the role of phosphatidylinositol 3-kinase (PI3-kinase) in the regulation of insulin secretion, we examined the effect of wortmannin, a PI3-kinase inhibitor, on insulin secretion using the isolated perfused rat pancreas and freshly isolated islets. In the perfused pancreas, 10(-8) M wortmannin significantly enhanced the insulin secretion induced by the combination of 8.3 mM glucose and 10(-5) M forskolin. In isolated islets, cyclic AMP (cAMP) content was significantly increased by wortmannin in the presence of 3.3 mM, 8.3 mM, and 16.7 mM glucose with or without forskolin. In the presence of 16.7 mM glucose with or without forskolin, wortmannin promoted insulin secretion significantly. On the other hand, in the presence of 8.3 mM glucose with forskolin, wortmannin augmented insulin secretion significantly; although wortmannin tended to promote insulin secretion in the presence of glucose alone, it was not significant. To determine if wortmannin increases cAMP content by promoting cAMP production or by inhibiting cAMP reduction, we examined the effects of wortmannin on 10(-4) M 3-isobutyl-1-methylxantine (IBMX)-induced insulin secretion and cAMP content. In contrast to the effect on forskolin-induced secretion, wortmannin had no effect on IBMX-induced insulin secretion or cAMP content. Moreover, wortmannin had no effect on nonhydrolyzable cAMP analog-induced insulin secretion in the perfusion study. These data indicate that wortmannin induces insulin secretion by inhibiting phosphodiesterase to increase cAMP content, and suggest that PI3-kinase inhibits insulin secretion by activating phosphodiesterase to reduce cAMP content.  相似文献   

9.
To elucidate the physiological significance of ketone bodies on insulin and glucagon secretion, the direct effects of beta-hydroxybutyrate (BOHB) and acetoacetate (AcAc) infusion on insulin and glucagon release from perfused rat pancreas were investigated. The BOHB or AcAc was administered at concentrations of 10, 1, or 0.1 mM for 30 min at 4.0 ml/min. High-concentration infusions of BOHB and AcAc (10 mM) produced significant increases in insulin release in the presence of 4.4 mM glucose, but low-concentration infusions of BOHB and AcAc (1 and 0.1 mM) caused no significant changes in insulin secretion from perfused rat pancreas. BOHB (10, 1, and 0.1 mM) and AcAc (10 and 1 mM) infusion significantly inhibited glucagon secretion from perfused rat pancreas. These results suggest that physiological concentrations of ketone bodies have no direct effect on insulin release but have a direct inhibitory effect on glucagon secretion from perfused rat pancreas.  相似文献   

10.
The effects of glucose alone, combinations of glucose with arginine or tolbutamide and either arginine or tolbutamide alone, on somatostatin, insulin, and glucagon secretion were investigated using the isolated perfused rat pancreas. When glucose alone was raised in graded increments at 15-min intervals from an initial concentration of 0 mM to a maximum of 16.7 mM, somatostatin as well as insulin in the perfusate increased with the glucose, while glucagon decreased. The similarity of the glucose stimulated somatostatin and insulin release was especially evident when the perfusate glucose was increased from an initial dose of 4.4 mM rather than 0 mM to 8.8 mM or 16.7 mM. In addition, glucose at concentrations varying from 4.4 mM to 11 mM dose-dependently enhanced arginine-induced somatostatin and insulin release and suppressed glucagon release dose-dependently as before. Arginine in the absence of glucose was not capable of stimulating somatostatin secretion whereas tolbutamide, in contrast, was capable of stimulating somatostatin secretion even in the absence of glucose.  相似文献   

11.
The isolated perfused rat pancreas with duodenal exclusion was used to study the stimulation of glucose-induced insulin release in response to chicken and porcine vasoactive intestinal peptide (VIP). The insulin response to 5.5 or 16.7 mM glucose was markedly enhanced by 750 pM porcine VIP and a concentration of 250 pM was still effective. At 250 pM, chicken VIp exhibited a slightly higher potency than porcine VIP at both glucose concentrations. The main difference between the two peptides was that the effect of porcine VIP disappeared immediately after the peptide suppression but tha of chicken VIP persisted for an additional period of 8-10 min. Somatostatin (10 ng/ml) blocked the stimulatory effect of both VIP molecules on glucose-induced insulin secretion. After suppression of VIP and somatostatin from the perfusion medium, insulin release increased to levels higher than those with glucose alone in the case of the avian peptide, but not in that porcine VIP. The data are consistent with previous results in the literature on stimulation of exocrine pancreas secretion and interaction with intestinal epithelium.  相似文献   

12.
The effects of chemical diabetes and fasting on fuel metabolism and insulin secretory activity in late pregnancy were investigated. Female Wistar rats were made chemically diabetic (CD) by intravenous injection of streptozotocine (30 mg/kg) 2 weeks before conception. When CD pregnant rats were fed, plasma glucose and insulin levels were not significantly different from those of normal pregnant rats. Ketone body levels, however, were higher in CD pregnant rats than in normal pregnant rats, indicating insulin resistance in CD rats. Insulin secretion from the perfused pancreas caused by arginine or glucose was markedly decreased in CD pregnant rats. The pregnant rats were fasted for 2 days, from day 19 to 21 of gestation. Plasma glucose and insulin concentrations decreased similarly in the two groups, whereas ketone body concentrations in CD pregnant rats were significantly higher than those in normal pregnant rats. Glucose-induced insulin secretion by the perfused pancreas was markedly attenuated by fasting and was not significantly different in normal and CD pregnant rats. These observations suggest that diabetes mellitus accelerates starvation in late gestation, due to increased insulin resistance and poor insulin secretion, and that fasting in diabetic pregnancy amplifies ketogenesis.  相似文献   

13.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

14.
To elucidate insulin action on hepatic glucose output (glycogenolysis) in the state exposed to an excess glucocorticoid, the fed rat liver was isolated and cyclically perfused with a medium containing 5 mM glucose and various concentrations of insulin. The rat was subcutaneously injected with 1 mg/kg of dexamethasone (Dex) for 7 days. Dex-treated rats showed marked increases of serum insulin and plasma glucose level compared with those in control rats. Hepatic glycogen contents in Dex group were markedly increased compared with those in control (115 +/- 5 and 28 +/- 4 mg/g, respectively). Insulin extraction rate in the perfused liver was not different between control and Dex group. Perfusate glucose level after 60 min perfusion was much higher in the Dex-treated rat liver than that of the control at 0 microU/ml insulin (34.5 +/- 2.5 vs 23.0 +/- 2.0 mM, P less than 0.01), and reduced to the nadir level (19.0 +/- 3.0 and 13.0 +/- 1.5 mM, respectively) at 100 microU/ml insulin in both groups, i.e., the decreasing rate in perfusate glucose level was not different between Dex and control group (43% and 44%, respectively). These results suggest that Dex-treatment augments hepatic glucose output, but does not affect the sensitivity and responsiveness of that to insulin.  相似文献   

15.
This work was designed to study the effects of sodium 2-chloropropionate (2CP) alone or combined with insulin, in vitro, on glucagon secretion from pancreas isolated from rats, made diabetic by streptozotocin (66 mg/kg i.p.). The pancreata were perfused with a physiological solution containing 2.8 mM glucose (0.5 g/l) and glucagon secretion was stimulated by an arginine infusion (5 mM) for 30 min. When 2CP (1 mM) and/or insulin (4 IU/l) were applied, they were infused from the start of the organ perfusion. In the presence of glucose alone, a marked decrease in glucagon output was observed in diabetic rat pancreas. The arginine perfusion induced a biphasic glucagon secretion both in normal and diabetic rat pancreas; this response was however clearly reduced in diabetic rat pancreas. In diabetic rat pancreas, the infusion of either 2CP or insulin had no effect on glucagon output in presence of glucose alone, nor did it modify the response to arginine. In contrast, the combined infusion of insulin and 2CP induced different effects depending on the conditions: whereas in presence of glucose alone it restored a glucagon output close to that recorded in normal rat pancreas, it did not modify the response to arginine.  相似文献   

16.
In the perfused pancreas from normal SD rats, AD-4610 (0.01-0.1 mM) potentiated biphasic insulin secretion induced by 7.5 mM of glucose. The concentration-response curve of insulin secretion to glucose was shifted leftwards with AD-4610 (0.1 mM) without altering either the threshold concentration of glucose to induce insulin secretion or the maximal insulin response to glucose, indicating increased sensitivity of the pancreatic B-cells to glucose. On the other hand, AD-4610 was 10-fold less effective in altering insulin secretion induced by arginine and glyceraldehyde. The effect of AD-4610 on insulin secretion and glucose metabolism was compared with that of tolbutamide in vivo. AD-4610 (100 mg/kg) potentiated insulin secretion induced by an intravenous glucose load, and also accelerated glucose metabolism without altering basal insulin secretion in normal rats. On the other hand, tolbutamide (20 mg/kg) increased basal insulin secretion, but slightly decreased glucose-induced insulin secretion. In yellow KK mice with hyperglycemia, AD-4610 (10-100 mg/kg) had a dose-dependent hypoglycemic action, but tolbutamide did not. Thus, AD-4610 stimulated insulin secretion in a glucose-dependent fashion and enhanced glucose metabolism in vivo. These results suggest that AD-4610 selectively potentiates glucose-induced insulin secretion by increasing the sensitivity of pancreatic B-cells to glucose and may be useful for treating human NIDDM through a different mechanism than that of tolbutamide.  相似文献   

17.
There are a variety of different tissue preparations which have been used to study secretion from the endocrine pancreas and there are considerable differences in the results obtained from these. The purpose of this study was to compare several preparations in one laboratory using the same rats, buffers, and radioimmunoassays. The preparations included the isolated perfused rat pancreas, fresh isolated intact islets and dispersed cells, and cultured islets and cells. Insulin release from the perfused rat pancreas at 2.8 mM glucose was so low that it could not be measured, such that over a 90-min time period the amount of insulin released was less than 0.004% of pancreatic insulin content. In contrast, islets in static incubation appear to release 2.0% of their stored content and dispersed cells appear to release 2.6% of their content. Samples were taken at early time points during incubations of fresh islets and dispersed cells, and it was found that almost all of the insulin found at the end of a 90-min incubation period was present during the first 5 min. It is therefore suspected that the true secretory rate of insulin at a low glucose concentration is far lower than had been generally appreciated. Glucagon release patterns showed similarities in that with isolated islets and dispersed cells a disproportionate amount of glucagon release was found during a 0- to 30-min incubation period when compared with the 30- to 90-min period. In summary, artifacts have been identified in some of the in vitro systems used for the study of endocrine pancreatic secretion and these deserve greater recognition.  相似文献   

18.
19.
Isolated rat pancreatic islets were prelabeled with [33Pi] and then incubated with basal (2.8 mM) or stimulatory (16.7 mM) glucose in the presence of [32Pi]. Subsequent changes in islet [33P] and [32P] were utilized as respective indices of net efflux and influx. During the initial eight min, (the period usually spanning the first phase of stimulated insulin secretion) efflux was significantly greater with 16.7 than 2.8 mM glucose whereas the lesser amount of phosphate influx did not differ in the two systems. During the subsequent seven min (a time usually associated with the onset of the second phase of stimulated insulin secretion), efflux was dampened in the presence of 16.7 mM glucose and Pi influx significantly exceeded the 2.8 mM glucose values. Thus, acute stimulation with glucose effects an initial phosphate depletion in pancreatic islets as efflux exceeds influx and repletion occurs thereafter as efflux is attenuated and influx is enhanced. These oscillations in islet phosphate may contribute to the biphasic pattern of glucose-stimulated insulin release.  相似文献   

20.
The immediate effect of corticosterone upon insulin secretion rates estimated by three different techniques (perfusior of isolated rat pancreas and perifusion or incubation of isolated islets of Langerhans) was studied for one hour. Three corticosterone concentrations were used: 0.02, 0.2 or 20 mg/l. With 4.2 mmol/l glucose, corticosterone did not affect insulin secretion, whereas, with a stimulating glucose concentration (16.7 mmol/l), insulin secretion was inhibited by the three corticosterone concentrations tested during incubation experiments, and by only the two physiological ones (0.02 and 0.2 mg/l) during islets perifusion and pancreas perfusion experiments. Moreover the inhibitory effect appeared more rapid with perifused islets than perfused pancreas, where only the second insulin secretory phase was disturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号