首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

2.
Question: Does long‐term grazing exclusion affect plant species diversity? And does this effect vary with long‐term phytomass accumulation across a regional productivity gradient? Location: Lowland grassy ecosystems across the state of Victoria, southeast Australia. Methods: Floristic surveys and phytomass sampling were conducted across a broad‐scale productivity gradient in grazing exclusion plots and adjacent grazed areas. Differences in species richness, evenness and life‐form evenness between grazed and ungrazed areas were analysed. The environmental drivers of long‐term phytomass accumulation were assessed using multiple linear regression analysis. Results: Species richness declined in the absence of grazing only at the high productivity sites (i.e. when phytomass accumulation was >500 g m?2). Species evenness and life‐form evenness also showed a negative relationship with increasing phytomass accumulation. Phytomass accumulation was positively associated with both soil nitrogen and rainfall, and negatively associated with tree cover. Conclusions: Competitive dominance is a key factor regulating plant diversity in productive grassy ecosystems, but canopy disturbance is not likely to be necessary to maintain diversity in less productive systems. The results support the predictions of models of the effects of grazing on plant diversity, such as the dynamic equilibrium model, whereby the effects of herbivory are context‐dependent and vary according to gradients of rainfall, soil fertility and tree cover.  相似文献   

3.
Livestock browsing and grazing are considered serious threats to the conservation of the Juan Fernández Islands’ flora, Chile. Nowadays the elimination of grazing by cattle is very difficult. In order to prevent the␣entrance of cattle into the native forests, an 8.3 km-long fence was established on the main island (Robinson Crusoe). The response of the vegetation was evaluated during 27 months of exclusion. The changes in abundances and composition of species were monitored in 12 permanent plots, each of 25 m2, located in ungrazed and grazed areas. We expected an increase in plant height and total ground cover in the ungrazed area, and also a directional compositional change towards forest species. We found five different patterns of variation or non-variation for the 22 species observed: (i) one species (Acaena argentea) diminished in abundance in the ungrazed area; (ii) another one (Conium maculatum) increased in the ungrazed area; (iii) one species (Vulpia bromoides) increased in the grazing area; and some species displayed no net variation, but they showed (iv) a nearly constant occurrence, or (v) they appeared and disappeared sporadically. Contrary to our hypothesis, the vegetation showed no net differences in cover on both sides of the fence. As expected, plant height increased in the ungrazed area. In this area, we detected no noteworthy changes in floristic composition towards forest species. On the contrary, four new pastureland species appeared outside of the exclusion area during the last year of evaluation. Other ungrazed sectors of the island showed qualitative differences from grazed sectors, such as major height and density of plants, and lower intensity of browsing, grazing, and trampling, attributable to a reduction of herbivorous pressure. The modest responses reported in this study could be related to the short lapse of time since the exclusion, soil compaction, overgrowth by a single species (A. argentea), great seasonal variations in different species’ abundances, the reduction in the number of cattle grazing the area previous to the fence’s installation, and persistent herbivory by rabbits (Oryctolagus cuniculus L.). We conclude that the effect of grazing by cattle is␣less than expected, and that there are other factors that delay the recovery of the Juan Fernández pasturelands.  相似文献   

4.
Long-term grazing shaped plant diversity in dry Mediterranean grasslands. Abandonment of grazing affects plant diversity especially in the northern Mediterranean. Considerable efforts are, therefore, under way for grassland conservation and restoration. Yet, we do not know at which temporal scales impacts of grazing abandonment appear and in particular how soil seed banks evolve after longer grazing abandonment. Here, we provide detailed data from one of the very few long-term experiments available. These experiments provide data for up to 23 years (1982–2005) of grazing exclusion built in 1982, 1989, 2000 and 2001. Grazing exclusion decreased species richness, modified vegetation structure and changed soil parameters. Decline in species richness appears in communities that experienced 16 and 23 years of grazing exclusion. Only four to nine plant species of this Mediterranean grassland built persistent soil seed banks appearing after grazing exclusion, compared to 40–50 species in the established vegetation of grazed plots. Hence, similarity between vegetation and soil seed bank decreased with time of grazing exclusion. Even 23 years after abandonment, no woody plants colonised the experiments. We conclude that vegetation will recover fast from grazing abandonment in the short-term. Nevertheless, longer abandonment will impact diversity due to reduced soil seed banks.  相似文献   

5.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

6.
Plant community diversity and ecosystem function are conditioned by competition among co-occurring species for multiple resources. Previous studies suggest that removal of standing biomass by grazing decreases competition for light, but coincident grazing effects on competition for soil nutrients remain largely unknown in Tibetan rangelands where grazing tends to deplete soil phosphorus availability. We measured five functional traits indicative of plant productivity and stoichiometry leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC) for component species of plant communities in grazed and ungrazed plots in five Tibetan alpine meadows. We examined the diversity of traits singly Rao index of functional diversity (FDrao) and in aggregate functional richness (FRic), functional divergence (FDiv), and functional evenness (FEve) in response to grazing. We tested whether foliar trait diversity increases with nutrient competition but decreases with light competition when competitive exclusion is reduced by grazing. The FDrao of LPC significantly increased under grazing, but FDrao for LCC, LNC and SLA tended to decrease. The FDrao of LDMC increased at the drier site but decreased at the wettest site. There was a strong negative association between increase in FDrao of LPC and decrease in soil nutrients, especially soil phosphorus availability. The FRic for all five traits together increased with species diversity following grazing, but neither FDiv nor FEve differed significantly between grazed and ungrazed plots at most sites. Grazing in Tibetan alpine meadows tends to increase competition for soil phosphorus while decreasing competition for light, resulting in an increase in the functional richness in grazed plant communities without any significant changes in the overall functional diversity of foliar traits. Our study highlights the potential importance of grazing mediated competition for multiple resources in alpine meadow ecosystems.  相似文献   

7.

Questions

How do changes in grazing intensity by different herbivores and differences in forest structure affect the assembly of ecological clusters within plant ecological networks in dryland plant communities?

Location

Eastern Australia across an area of 0.4 million km2.

Methods

We used correlation network analysis and structural equation modelling to examine how changes in grazing intensity, by different herbivores, and differences in forest structure (tree canopy cover, basal area and density) and soil fertility influenced the assembly of ecological clusters of plant communities (i.e. relative abundance of ecological clusters formed by co‐occurring plant species within an ecological network) in three forested communities from eastern Australia.

Results

Livestock grazing and forest structure regulated the relative abundance of ecological clusters within plant networks, but their effects on these plant assemblies were highly dependent on the ecological cluster and forest community type, with no single winner or loser across forest types, conditions or grazing intensities. Thus, the relative abundance of some ecological clusters increased under grazing while others declined, a response that was maintained across different forest structures. The relative importance of grazing, forest structure and soil fertility varied across forest community type. The two eucalypt communities exhibited mixed effects of grazing and forest structure (Eucalyptus largiflorens ) or forest structure only (Eucalyptus camaldulensis ). In the third (Callitris glaucophylla ) community, grazing played a larger role in controlling the plant community assembly. Soil fertility (soil C and P) effects were of a similar magnitude to grazing and forest structure, but the effects differed among clusters.

Conclusions

Livestock grazing and forest structure regulated the relative abundance of ecological clusters within networks of plant communities in forests in eastern Australia. Our study uses a novel approach of ecological clusters to show that differences in grazing and forest structure will always disadvantage some plant ecological clusters. Furthermore, changes in one cluster will ultimately affect other clusters. Any changes in management therefore will have varied effects on different ecological plant clusters.
  相似文献   

8.
Large areas of rainforests in Australia and other tropical regions have been extensively cleared since the mid‐19th century. As abandoned agro‐pastoral land becomes increasingly prominent, there is an ongoing need to identify cost‐effective approaches to reinstate forest on these landscapes. Assisted regeneration is a potentially lower cost restoration approach which aims to accelerate forest recovery by removing barriers to natural regeneration. However, despite being widely used its ecological benefits are poorly quantified, particularly on long cleared and grazed land. This study quantified the benefits of assisted regeneration on previously cleared land in a subtropical rainforest ecosystem within eastern Australia. Three different site types were used (grazed, grazing excluded and grazing excluded plus assisted regeneration, each with a maximum distance of 120 m to remnant forest) to compare forest recovery up to 10 years after grazing was relieved with and without 4–6 years of assisted regeneration. Assisted regeneration sites showed a threefold increase in canopy cover, fourfold increase in native tree and shrub species richness and over 40 times greater native stem density compared to nonassisted regeneration sites. Stimulation of native recruitment appears dependent on the simultaneous removal of multiple barriers to regeneration, with the exclusion of grazing alone insufficient. This demonstrates the additional ecological benefits arising from investment in assisted regeneration. It offers considerable promise as a cost‐effective tool for accelerating and improving reinstatement of forest on retired agro‐pastoral land in the humid subtropics.  相似文献   

9.
A major challenge to advancing the science and practice of ecological restoration is working across large landscapes containing diverse sites that may respond differently to restoration. We conducted a 5‐year restoration experiment, replicated across 9 sites spanning 3 soil parent material types within a 9,000‐ha Pinus ponderosa forest landscape. We evaluated plant community response to restoration Pinus thinning, grazing, and aqueous smoke application. We measured vegetation before (2003) and 3 (2006) and 5 (2008) years after treatment. Plant community responses of species richness, cover, and composition were diverse, ranging from increases, decreases, or no change depending on soil parent material, tree thinning, and presence or exclusion of grazing. Restoration outcomes were under hierarchical control: soil parent material constrained response to Pinus thinning, which in turn influenced grazing effects. On limestone‐derived soil, responses included no change in species richness but increased plant cover with Pinus thinning. Both plant richness and cover increased on benmorite soil after thinning, and cover generally increased more without grazing. On rocky, basalt soil, plant richness increased but cover did not after any treatment. Diversity of responses to restoration has implications for: (1) setting goals or monitoring indicators tailored to inherent soil capability; (2) identifying where grazing most affects restoration outcomes; and (3) forecasting responses to restoration across landscapes. Diverse responses to restoration along physiographic gradients such as soil parent material warrant consideration when developing restoration across degraded landscapes.  相似文献   

10.
Secondary forests constitute a substantial proportion of tropical forestlands. These forests occur on both public and private lands and different underlying environmental variables and management regimes may affect post‐abandonment successional processes and resultant forest structure and biodiversity. We examined whether differences in ownership led to differences in forest structure, tree diversity, and tree species composition across a gradient of soil fertility and forest age. We collected soil samples and surveyed all trees in 82 public and 66 private 0.1‐ha forest plots arrayed across forest age and soil gradients in Guanacaste, Costa Rica. We found that soil fertility appeared to drive the spatial structure of public vs. private ownership; public conservation lands appeared to be non‐randomly located on areas of lower soil fertility. On private lands, areas of crops/pasture appeared to be non‐randomly located on higher soil fertility areas while forests occupied areas of lower soil fertility. We found that forest structure and tree species diversity did not differ significantly between public and private ownership. However, public and private forests differed in tree species composition: 11 percent were more prevalent in public forest and 7 percent were more prevalent in private forest. Swietenia macrophylla, Cedrela odorata, and Astronium graveolens were more prevalent in public forests likely because public forests provide stronger protection for these highly prized timber species. Guazuma ulmifolia was the most abundant tree in private forests likely because this species is widely consumed and dispersed by cattle. Furthermore, some compositional differences appear to result from soil fertility differences due to non‐random placement of public and private land holdings with respect to soil fertility. Land ownership creates a distinctive species composition signature that is likely the result of differences in soil fertility and management between the ownership types. Both biophysical and social variables should be considered to advance understanding of tropical secondary forest structure and biodiversity.  相似文献   

11.
为探讨自然恢复过程中喀斯特森林土壤有机质含量(SOM)与土壤理化指标及植物多样性指数的相关性,对贵州省茂兰国家级自然保护区中不同森林类型的SOM、土壤理化性质和植物多样性进行了研究。根据乔木层物种的重要值,将保护区的41个调查样地划分为香叶树-枫香林、檵木-马尾松林、槭树-朴树林、小叶栾树-化香林、灯台-小花梾木林和四照花-青冈栎林类型。结果表明,部分森林类型土壤A层或B层的SOM差异显著,且部分森林类型的植物种数、直径、高度和密度,以及Margalef指数、Simpson指数、Shannon-Wiener指数和Pielou指数也差异显著。土壤孔隙度、蓄水量和主要肥力与养分指标随SOM增加而增大。乔木层的植物多样性指数与SOM呈正相关,与土壤A层SOM相关显著、Simpson指数和Pielou指数与土壤B层SOM相关显著。灌木层、草本层的植物多样性指数与SOM相关不显著。多元分析结果表明,植物多样性指数对土壤A层SOM的总贡献率呈灌木层乔木层草本层、对土壤B层SOM的总贡献率呈草本层乔木层灌木层的趋势,表明喀斯特地区SOM管理的植物多样性措施适宜以乔木树种为主、辅以灌木与草本层植物的复合经营方式。同时,土壤SOM不仅受乔木层植物多样性指数的影响、也受林分所处演替阶段与结构指标的影响,植物多样性指数的二次多项式拐点可成为喀斯特石漠化治理工程中物种量化管理的参考依据之一。  相似文献   

12.
Small isolated patches of native forest surrounded by extensive pastoral grasslands, characteristic of many New Zealand rural landscapes, represent an important reservoir of lowland biodiversity. Improved management of them is a major focus of biodiversity conservation initiatives in New Zealand. We quantified the long-term impacts of grazing on indigenous forest remnants in hill country at Whatawhata, western Waikato, North Island. Structure and composition were compared between forest fragments grazed for >50 years and nearby ungrazed continuous forest. Grazed fragments had shorter and less shady canopies, sparser understoreys, tree populations with larger mean diameters, and ground layers with lower cover of litter and higher cover of vegetation and bare soil than continuous forest. Fragments also had lower indigenous-plant species richness, especially in sapling and seedling populations, and almost no palatable indigenous shrubs, terrestrial orchids, and ferns that require high humidity (e.g. Hymenophyllum spp.), but contained many indigenous and adventive herbaceous species. A transition appears to be occurring in grazed fragments from tall, long-lived trees like Beilschmiedia tawa and Dysoxylum spectabile to short and shorter-lived trees like Kunzea ericoides, Melicytus ramiflorus, and Dicksonia squarrosa. Because grazing inhibits most regeneration processes, unfenced remnants of conifer–broadleaved forest are unlikely to be maintained in grazed pasture in the long term.  相似文献   

13.
通过对西双版纳地区的6个“龙山”片断热带雨林与同样类型的原始热带雨林的比较研究,探讨了片断热带雨林的群落结构、种类组成、生活型构成、种群结构、植物丰富度及多样性等的变化及其规律。随着热带雨林的片断化,森林边缘效应和人为干扰加剧,热带雨林群落的结构变得不完整,植物丰富度降低。在生活型构成上,附生植物,大、中高位芽植物以及地上芽植物比例减少,藤本植物和小高位芽植物比例明显增高。在种群结构上,受轻、中度干扰的片断雨林,仅含1~2个个体的种类在群落中的相对数量有所增加,乔木种类组成变得不稳定,随着人为干扰的加剧,那些仅有1~2个个体为代表的种类将首先消失。在单位面积种数和物种多样性指数上,情况比较复杂,热带雨林片断化和受到一定干扰可能会增加藤本植物多样性指数,但干扰过度又会减低其多样性指数,附生植物多样性指数则随干扰和隔离时间呈明显下降趋势,但总的说来,片断热带雨林单位面积上的种数远比原始林少得多,随着人为干扰和隔离的加剧,物种多样性指数显著降低。  相似文献   

14.
Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil conditions affect forest structure and diversity within each of the two forest types. After correcting for spatial effects, soil‐vegetation relationships differed between the dry and the moist forest, being strongest in the dry forest. Furthermore, we hypothesized that soil nutrients would play a more important role in the moist forest than in the dry forest because vegetation in the moist forest is less constrained by water availability and thus can show its full potential response to soil fertility. However, contrary to our expectations, we found that soil fertility explained a larger number of forest variables in the dry forest (50 percent) than in the moist forest (17 percent). Shannon diversity declined with soil fertility at both sites, probably because the most dominant, shade‐tolerant species strongly increased in abundance as soil fertility increased.  相似文献   

15.
长白山西坡风灾区森林恢复状况   总被引:1,自引:0,他引:1  
以长白山西坡风灾迹地(阔叶红松林、云冷杉林、岳桦林)的样地调查资料为基础,研究了各林型森林群落遇灾23年后的恢复特征.结果显示:3种林型的恢复速度为阔叶红松林>云冷杉林>岳桦林,并且它们与各自对照的群落共有度指数分别为0.49、0.44、0.33.风灾对各林型的乔木组成和多样性的影响不同:阔叶红松林中,风灾显著增加了乔木总数量,但对乔木种数和α多样性指数没有显著影响(P>0.05);云冷杉林中,风灾仅显著降低了Shannon多样性指数和Simpson优势度指数;岳桦林中,除Pielou均匀度指数,其余多样性指数都因风灾而显著降低.各林型优势树种组成变化及更新情况对风灾的响应也与林型相关:阔叶红松林与对照区的优势树种组成显著不同,而云冷杉林及岳桦林受灾前后的优势树种组成差异均不大;阔叶红松林的幼树更新情况较好,云冷杉林有少量更新,岳桦林带几乎没有林木更新.表明风灾对森林群落的影响在23年后仍未消除,森林在风灾干扰后的恢复需要一个漫长的过程.  相似文献   

16.
Grasslands being used in sheep farming systems are managed under a variety of agricultural production, recreational and conservational objectives. Although sheep grazing is rarely considered the best method for delivering conservation objectives in seminatural temperate grasslands, the literature does not provide unequivocal evidence on the impact of sheep grazing on pasture biodiversity. Our aim was therefore to review evidence of the impacts of stocking rate, grazing period and soil fertility on plant communities and arthropod populations in both mesotrophic grasslands typical of agriculturally improved areas and in native plant communities. We therefore conducted a literature search of articles published up to the end of the year 2010 using ‘sheep’ and ‘grazing’ as keywords, together with variables describing grassland management, plant community structure or arthropod taxa. The filtering process led to the selection of 48 articles, with 42 included in the stocking rate dataset, 9 in the grazing period dataset and 10 in the soil fertility dataset. The meta-analysis did not reveal any significant trends for plant species richness or plant community evenness along a wide stocking rate gradient. However, we found frequent shifts in functional groups or plant species abundance that could be explained by the functional properties of the plants in the community. The meta-analysis confirmed that increasing soil fertility decreased plant species richness. Despite the very limited dataset, plant species richness was significantly greater in autumn-grazed pastures than in ungrazed areas, which suggests that choosing an appropriate grazing period would be a promising option for preserving biodiversity in sheep farming systems. Qualitative review indicated that low grazing intensity had positive effects on Orthoptera, Hemiptera (especially phytophagous Auchenorrhyncha) and, despite a diverse range of feeding strategies, for the species richness of Coleoptera. Lepidoptera, which were favoured by more abundant flowering plants, also benefited from low grazing intensities. Spider abundance and species richness were higher in ungrazed than in grazed pastures. In contrast, there are insufficient published studies to draw any firm conclusions on the benefits of late grazing or stopping fertilization on insect diversity, and no grounds for including any of this information in decision support tools at this stage.  相似文献   

17.
滇中几种人工林生态系统恢复效应研究   总被引:7,自引:2,他引:5  
对滇中几种典型人工林生态系统恢复效应研究表明,由不同树种构成的人工林生态系统植物多样性、森林水文、地表土壤侵蚀控制、土壤改良和森林结构的恢复具有显著差异.用乡土树种造林能促进植物多样性.生态恢复变量间具有某种相关关系.草本植物盖度、群落均匀度、Shannon-Wiener指数、土壤有效钾、土壤容重、草本植物生物量、乔木材积、全钾、土壤侵蚀、土壤Si/V、枯落物凋落量、非毛管孔隙、穿透降雨是生态恢复主导效应变量.植物多样性的恢复处于生态恢复的中心位置.并用平均恢复距离指数及恢复距离树对几种生态系统恢复程度进行了评价。  相似文献   

18.
喀斯特天然林植物多样性指数和土壤理化指标的相关性   总被引:2,自引:0,他引:2  
张喜  王莉莉  刘延惠  文弢  崔迎春  姜霞  张佐玉  霍达  李丹 《生态学报》2016,36(12):3609-3620
植物多样性的土壤生态系统功能是喀斯特生态学研究的热点之一。在贵州省茂兰国家级自然保护区不同功能区(干扰等级)内采用野外样地调查和实验室分析相结合的方法,分析了41个喀斯特森林样地的植物多样性指数和土壤理化指标值的变化规律与相关性。结果表明:(1)依据乔木层物种重要值聚类法划分的5个喀斯特森林类型包括小叶栾树-青冈栎林、香叶树-枫香林、香椿-香叶树林、灯台-小花梾木林和檵木-马尾松林,由核心区、缓冲区、实验区至外缘区,乔木层植物多样性指数、林地岩石裸露率、土壤蓄水量、肥力及养分指标呈降低趋势。(2)因子分析表明不同层片植物多样性和不同土层土壤理化因子的相关趋势性各异。相关显著的因子对数量率呈乔木灌木草本的趋势,乔木植物多样性因子起主导作用。(3)喀斯特森林乔木层植物多样性指数和土壤理化指标的相关性分3种类型。直线型是植物多样性指数和土壤理化指标值相关性中较普遍的一类,相应指标对数量率为39.84%;曲线型是植物多样性指数和土壤理化指标值相关性中机理较复杂的一类,相应指标对数量率为46.10%,其中植物多样性指数有拐点值无生态意义的指标对数量率为11.72%,有拐点值有生态意义且呈先降后升、或先升后降趋势的指标对数量率分别为17.19%;无关型是植物多样性指数和土壤理化指标值相关性不显著,相应指标对数量率为54.69%。(4)喀斯特地区水土资源管理为目标的营林措施中,天然林乔木层植物多样性指数对土壤物理、肥力和养分指标响应的拐点值可成为人工造林中物种数量与株数比例选择的参考依据之一。  相似文献   

19.
Plant communities in the montane forest of Mount Elgon National Park were studied in order to assess the impact of grazing and cultivation on species composition. Present and former land uses, tree, shrub and herb species, soil properties and the percentage cover and height of trees, shrubs and herbs were determined in 40 plots. An indirect ordination of these plots showed that species composition was primarily determined by successional stage and agricultural disturbance. In forest plots (ordinated separately) where the widest range of former and current grazing intensities had occurred, evidence of grazing history, soil phosphorus and vegetation height correlated negatively with the strongest ordination axis. Least grazed forest plots had fewer tree seedlings and saplings than more intensively grazed plots. This may be due to the increase in Mimulopsis alpina (Acanthaceae) in less grazed forest where tree regeneration might otherwise be more advanced. Tree seedlings and saplings were uncommon in the forest, rarely exceeding 30cm in height and there was no tree understorey. Although grazing is important for preserving species diversity in Mount Elgon National Park through the maintenance of species-rich grasslands, long-term effects on montane forest communities must be considered in future park management.  相似文献   

20.
Slash-and-burn agriculture is an important driver of deforestation and ecosystem degradation, with large effects on biodiversity and carbon sequestration. This study was conducted in a forest in Madagascar, which consists of fragments of slash-and-burn patches, within a matrix of secondary and primary forest. By recording species richness, abundance, and composition of trees, shrubs, and herbs in fallows of various age and slash-and-burn history, and in the secondary and primary forest, we show how slash-and-burn intensity (number of cycles, duration of abandonment), years since last abandonment, and environmental factors (distance to primary forest and topography) affect the natural succession and recovery of the forest ecosystem. We used ordination analyses to examine how the species composition varied between the different successions stages, and to examine tree recruitment. Our results show shrub dominance the first years after abandonment. Thereafter, a subsequent increase in species richness and abundance of tree seedlings and saplings suggests a succession towards the diversity and composition of the secondary and primary forest, although a big gap between the oldest fallows and the secondary forest shows that this will take much more than 30 years. A high number and frequency of slash-and-burn cycles decreased tree seedling and sapling richness and abundance, suggesting that reducing slash-and-burn intensity will increase the speed of tree recruitment and fallow recovery. Trees can be planted into fallows to speed up vegetation and soil recovery, such that fallows can be usable within needed time and thus the extension of cultivated areas reduced. We recommend further testing of six potential species for restoration based on their early colonization of the fallows and their survival through vegetation succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号