首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choline acetyltransferase (ChAT) is the key enzyme for acetylcholine (ACh) synthesis and constitutes a reliable marker for the integrity of cholinergic neurons. Cortical ChAT activity is decreased in the brain of patients suffering from Alzheimer's and Parkinson's diseases. The standard method used to measure the activity of ChAT enzyme relies on a very sensitive radiometric assay, but can only be performed on post‐mortem tissue samples. Here, we demonstrate the possibility to monitor ACh synthesis in rat brain homogenates in real time using NMR spectroscopy. First, the experimental conditions of the radiometric assay were carefully adjusted to produce maximum ACh levels. This was important for translating the assay to NMR, which has a low intrinsic sensitivity. We then used 15N‐choline and a pulse sequence designed to filter proton polarization by nitrogen coupling before 1H‐NMR detection. ACh signal was resolved from choline signal and therefore it was possible to monitor ChAT‐mediated ACh synthesis selectively over time. We propose that the present approach using a labeled precursor to monitor the enzymatic synthesis of ACh in rat brain homogenates through real‐time NMR represents a useful tool to detect neurotransmitter synthesis. This method may be adapted to assess the state of the cholinergic system in the brain in vivo in a non‐invasive manner using NMR spectroscopic techniques.  相似文献   

2.
3.
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine (ACh) and is a phenotypic marker for cholinergic neurons. Cholinergic neurons in brain are involved in cognitive function, attentional processing and motor control, and decreased ChAT activity is found in several neurological disorders including Alzheimer's disease. Dysregulation of ChAT and cholinergic communication is also associated with some spontaneous point-mutations in ChAT that alter its substrate binding kinetics, or by disruption of signaling pathways that could regulate protein kinases for which ChAT is a substrate. It has been identified recently that the catalytic activity and subcellular distribution of ChAT, and its interaction with other cellular proteins, can be modified by phosphorylation of the enzyme by protein kinase-C and Ca2+/calmodulin-dependent protein kinase II; these kinases appear also to mediate some of the effects of beta-amyloid peptides on cholinergic neuron functions, including the effects on ChAT. This review outlines a new model for the regulation of cholinergic transmission at the level of the presynaptic terminal that is mediated by hierarchically-regulated, multi-site phosphorylation of ChAT.  相似文献   

4.
The choline acetyltransferase (ChAT) activator, which enhances cholinergic transmission via an augmentation of the enzymatic production of acetylcholine (ACh), is an important factor in the treatment of Alzheimer's disease (AD). Methanolic extracts from Pueraria thunbergiana exhibited an activation effect (46%) on ChAT in vitro. Via the sequential isolation of Pueraria thunbergiana, the active component was ultimately identified as daidzein (4',7-dihydroxy-isoflavone). In order to investigate the effects of daidzein from Pueraria thunbergiana on scopolamine-induced impairments of learning and memory, we conducted a series of in vivo tests. Administration of daidzein (4.5 mg/kg body weight) to mice was shown significantly to reverse scopolamine-induced amnesia, according to the results of a Y-maze test. Injections of scopolamine into mice resulted in impaired performance on Y-maze tests (a 37% decreases in alternation behavior). By way of contrast, mice treated with daidzein prior to the scopolamine injections were noticeably protected from this performance impairment (an approximately 12%-21% decrease in alternation behavior). These results indicate that daidzein might play a role in acetylcholine biosynthesis as a ChAT activator, and that it also ameliorates scopolamine-induced amnesia.  相似文献   

5.
Choline acetyltransferase (ChAT) catalyzes the transfer of an acetyl group from acetyl-CoA to choline to produce the neurotransmitter acetylcholine (ACh). We have produced large quantities of pure human ChAT using two different bacterial expression systems. In the first, ChAT is fused to a chitin-binding domain via a self-cleavable linker allowing the release of ChAT without the use of proteases. In the second, ChAT is fused to a hexahistidine (His6) tag at the N-terminus with a linker incorporating a TEV protease cleavage site. In both cases, pure ChAT was produced that has a final specific activity of approximately 50 micromol ACh/min/mg and is suitable for structural characterization. Analysis of purified ChAT by Western blots and mass spectrometry revealed that the C-terminal 15 amino acids were slowly removed by endogenous proteolytic activity, to produce a stable 615 residue protein. Furthermore, we show that purified recombinant human ChAT is highly prone to oxidation, leading to the formation of covalent dimers and/or a loss of catalytic activity. Kinetic parameters of our purified proteins were obtained and, when compared to previously published constants for human placental ChAT, we found that recombinant human ChAT displays lower values for Michaelis and inhibition constants for ACh, which may be due to the complete absence of post-translational modifications.  相似文献   

6.
Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.  相似文献   

7.
Ogawa H  Fujii T  Watanabe Y  Kawashima K 《Life sciences》2003,72(18-19):2127-2130
Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) in cholinergic neurons. However, both ACh and mRNA for ChAT are expressed in mononuclear leukocytes and various human leukemic T-cell lines. Multiple ChAT mRNA species (R-, N0-, N1-, N2-, and M-types) having an identical coding region and different 5'-noncoding regions have been discovered in human brain and spinal cord. These mRNAs are transcribed by a combination of use of different promoter regions and alternative splicing. However, which types of ChAT mRNA species are expressed in T-lymphocytes remains to be elucidated. In the present study, we used two human leukemic T-cell lines, CCRF-CEM (CEM) and MOLT-3, which express the same ChAT mRNA as that in the nervous system. Major mRNA species in CEM were N2- and M-type, and to a lesser extent N1-type, while MOLT-3 expressed only N2-type. Neither CEM nor MOLT-3 expressed R-type mRNA. We previously found a lack of mRNA expression encoding vesicular acetylcholine transporter (VAChT) in CEM and MOLT-3, which mediates ACh transport to synaptic vesicles in cholinergic neurons. These findings suggest that the mechanisms regulating ChAT mRNA expression in T-lymphocytes differ from those in cholinergic neurons.  相似文献   

8.
Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.  相似文献   

9.
In order to study the effect of synaptic contact on the amounts of choline acetyltransferase (ChAT) and acetylcholine (ACh) in the nerve terminals and on their ability to release ACh, a freeze—thaw procedure was developed as a means to induce long lasting degeneration of rat soleus muscle. It was found that 4 days after the freeze—thaw procedure the preparation did not contract upon direct electric stimulation and the level of creatine kinase (CK) was below detection. The preparation contained about 15% of the ChAT activity and 15% of the ACh content of the controls. The ACh release evoked by 50 mM KCl was 25% of controls, but it was, when expressed as a fraction of the ACh content, about twice as high as that in control muscles. At day 12, the preparation still did not contract and the level of CK was less than 5% of controls. The ChAT activity and the ACh content were 40%) and 20% of controls, respectively. However, no release of ACh could be evoked by 50 mM KCl. At days 28 and 58 the preparation contracted upon stimulation of the nerve; the CK activity had recovered to about 20% and the ACh content to 40%, while the ChAT activity did not increase above 40%. The KCl–evoked ACh release had recovered to 20—30% of controls. The results indicate that freezing destroyed muscle cells and most intramuscular nerve branches. Subsequent regeneration of muscle fibres was slow, probably because freezing had killed many satellite cells in the muscle. Because the ChAT activity at day 12 had recovered when CK was almost absent and the preparation failed to contract, we conclude that there was expression of ChAT activity in ‘nerve terminals’ which do not make contact with regenerated muscle cells, although little if any ACh was released from these sites. ©1998 Elsevier Science Ltd. All rights reserved.  相似文献   

10.
11.
The biosynthetic enzyme for the neurotransmitter acetylcholine, choline acetyltransferase (ChAT) (E.C. 2.3.1.6), is essential for the development and neuronal activities of cholinergic systems involved in many fundamental brain functions. ChAT catalyzes the transfer of an acetyl group from acetyl-coenzyme A to choline to form the neurotransmitter acetylcholine. Since its discovery more than 60 years ago much research has been devoted to the kinetic studies of this enzyme. For the first time we report the crystal structure of rat ChAT (rChAT) to 1.55 A resolution. The structure of rChAT is a monomer and consists of two domains with an interfacial active site tunnel. This structure, with the modeled substrate binding, provides critical insights into the molecular basis for the production of acetylcholine and may further our understanding of disease causing mutations.  相似文献   

12.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

13.
蜜蜂脑乙酰胆碱免疫反应阳性神经元的分布   总被引:1,自引:1,他引:0  
通过免疫组织化学方法-PAP法,使用乙酰胆碱(ACh)抗体,研究了中华蜂(Apis sinensis)和意大利蜂(Apis mellifera L)脑中具有乙酰胆碱免疫阳性反应的神经元胞体的形态、分布及神经元类型.并和已知的在其他昆虫脑中用ACh的合成酶ChAT和其水解酶AChE的抗体免疫组化法所获得的结果进行了比较.  相似文献   

14.
Abstract— Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine in nervous tissue, has been purified to apparent homogeneity from the electric organ of the electric fish Torpedo californica using ion-exchange, gel filtration, and hydroxyapatite chromatography. The final preparation had been purified 8570-fold to a specific activity of 30μmol ACh formed/min/mg protein. The purified protein has a pH optimum of 6.8 (phosphate buffer), is activated by low concentrations (ca. 10 m m ) of ammonium or alkylammonium ions, and is strongly inhibited by a sulfhydryl blocking reagent (DTNB). ChAT has a mol. wt. of 63000 when measured by SDS-polyacrylamide gel electrophoresis or gel filtration.
A new method for the rapid assay of ChAT activity is described in which unreacted substrate ([3H]acetyl-CoA) is removed from reaction mixtures by adsorption to charcoal: some advantages of this technique are discussed.  相似文献   

15.
Classical neurotransmitters such as gamma-aminobutyric acid and glutamate are released from synaptic nerve terminals by exocytosis of synaptic vesicles. PC12 cells also have SSVs capable of storing acetylcholine (ACh). A novel method to examine the effect of transient transfection of any gene of interest on the exocytosis of SSVs was developed. The transfection of choline acetyltransferase (ChAT) into PC12 cells which have lost ACh synthesizing activity resulted in the accumulation of a substantial amount of ACh. Synthesized ACh was released in Ca(2+)-dependent manner. Release was thought to occur by an exocytosis of SSVs because: (1) release was abolished by treating the cells with vesamicol, a specific inhibitor of the vesicular ACh transporter (VAChT) localizing specifically in SSVs; and (2) the release was further increased by cotransfecting rat VAChT with the ChAT. By means of this method, we showed that overexpression of complexin I or II with ChAT markedly suppressed high-K(+)-dependent ACh release of SSVs.  相似文献   

16.
17.
Abstract: Stably transfected cells expressing mouse choline acetyltransferase (ChAT) cDNA were established, and the synthesis and release of acetylcholine (ACh) were examined. A cDNA clone coding for mouse ChAT was inserted into an expression vector (pEF321) containing a promoter for human elongation factor 1α to construct pEFmChAT. Neuronal (NG108-15, NS20Y, N1E115, and Neuro2A) and nonneuronal cell lines (L cells and NIH3T3) were transfected with pEFmChAT, and the cell lines that stably expressed high ChAT activity were selected. These cells expressed the 66-kDa ChAT protein and accumulated ACh mostly in the cytosol. The concentration of intracellular ACh in the cells increased upon raising the choline level in the medium. The cells continuously released ACh in a Ca2+-independent fashion. Neither high K+ nor calcium ionophore stimulated release of ACh from the cells.  相似文献   

18.
The effects of nerve growth factor (NGF) on the intracellular content of acetylcholine (ACh) in cultured septal neurons from developing rats have been examined. The content of ACh could be measured by using HPLC and electrochemical detection (HPLC-ECD), coupled with an immobilized enzyme column. This method of determination is very simple and rapid, and is highly sensitive. The content of ACh and the activity of choline acetyltransferase (ChAT) in cultured postnatal day 1 (P1) septal neurons grown on an astroglial "feeder" layer was increased during the period of cultivation by the addition of NGF. The activities of ChAT and the content of ACh increased in a dose-dependent manner in direct relationship to the different amounts of NGF employed. These effects of NGF, i.e., elevating the intracellular content of ACh, accompanied by an increase in activity of ChAT, also were confirmed in the P1 septal organotypic cultures. Additionally, embryonic day 17 (E17) septal neurons in a serum-free medium displayed a similar responsiveness to NGF with respect to the elevation in the content of ACh and the increase in activity of ChAT. These results suggest that intracellular levels of ACh are likely to be regulated by NGF in a fashion similar to that of the activity levels of the biosynthetic enzyme.  相似文献   

19.
为评价神经生长因子(NGF)、混合型神经节苷脂(GM)和单唾液酸神经节苷脂(GM1)对中枢胆碱能神经损伤早期的影响,在大鼠单侧隔-海马通路部分损伤后即时经脑室分别注入上述三种神经元营养因子,7d后取两侧海马分别测定乙酰胆碱(ACh)、胆碱乙酰基转移酶(ChAT)和胆碱酯酶(ChE)。损伤对照组(脑室注入盐水)术侧海马ACh含量保留率为对侧的20.3%,ChAT活力为50%,ChE活力为48.3%。给予NGF、GM或GM1的实验组,ACh含量保留率分别为34.9%,35.3%和47.7%;ChAT活力为77.4%,78.4%和69.2%;而ChE活力的保留率未见明显改变。这些神经元营养因子显著增加了大鼠隔-海马通路损伤后海马内ACh含量和ChAT活力,说明它们减轻了损伤侧海马胆碱能神经纤维的破坏,具有明显的损伤早期保护作用。  相似文献   

20.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号