首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth.  相似文献   

2.
Atmospheric CO2 (ca) rise changes the physiology and possibly growth of tropical trees, but these effects are likely modified by climate. Such ca × climate interactions importantly drive CO2 fertilization effects of tropical forests predicted by global vegetation models, but have not been tested empirically. Here we use tree‐ring analyses to quantify how ca rise has shifted the sensitivity of tree stem growth to annual fluctuations in rainfall and temperature. We hypothesized that ca rise reduces drought sensitivity and increases temperature sensitivity of growth, by reducing transpiration and increasing leaf temperature. These responses were expected for cooler sites. At warmer sites, ca rise may cause leaf temperatures to frequently exceed the optimum for photosynthesis, and thus induce increased drought sensitivity and stronger negative effects of temperature. We tested these hypotheses using measurements of 5,318 annual rings from 129 trees of the widely distributed (sub‐)tropical tree species, Toona ciliata. We studied growth responses during 1950–2014, a period during which ca rose by 28%. Tree‐ring data were obtained from two cooler (mean annual temperature: 20.5–20.7°C) and two warmer (23.5–24.8°C) sites. We tested ca × climate interactions, using mixed‐effect models of ring‐width measurements. Our statistical models revealed several significant and robust ca × climate interactions. At cooler sites (and seasons), ca × climate interactions showed good agreement with hypothesized growth responses of reduced drought sensitivity and increased temperature sensitivity. At warmer sites, drought sensitivity increased with increasing ca, as predicted, and hot years caused stronger growth reduction at high ca. Overall, ca rise has significantly modified sensitivity of Toona stem growth to climatic variation, but these changes depended on mean climate. Our study suggests that effects of ca rise on tropical tree growth may be more complex and less stimulatory than commonly assumed and require a better representation in global vegetation models.  相似文献   

3.
Several lines of evidence point to an increase in the activity of the terrestrial biosphere over recent decades, impacting the global net land carbon sink (NLS) and its control on the growth of atmospheric carbon dioxide (ca). Global terrestrial gross primary production (GPP)—the rate of carbon fixation by photosynthesis—is estimated to have risen by (31 ± 5)% since 1900, but the relative contributions of different putative drivers to this increase are not well known. Here we identify the rising atmospheric CO2 concentration as the dominant driver. We reconcile leaf‐level and global atmospheric constraints on trends in modeled biospheric activity to reveal a global CO2 fertilization effect on photosynthesis of 30% since 1900, or 47% for a doubling of ca above the pre‐industrial level. Our historic value is nearly twice as high as current estimates (17 ± 4)% that do not use the full range of available constraints. Consequently, under a future low‐emission scenario, we project a land carbon sink (174 PgC, 2006–2099) that is 57 PgC larger than if a lower CO2 fertilization effect comparable with current estimates is assumed. These findings suggest a larger beneficial role of the land carbon sink in modulating future excess anthropogenic CO2 consistent with the target of the Paris Agreement to stay below 2°C warming, and underscore the importance of preserving terrestrial carbon sinks.  相似文献   

4.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

5.
Climate projections from 20 downscaled global climate models (GCMs) were used with the 3‐PG model to predict the future productivity and water use of planted loblolly pine (Pinus taeda) growing across the southeastern United States. Predictions were made using Representative Concentration Pathways (RCP) 4.5 and 8.5. These represent scenarios in which total radiative forcing stabilizes before 2100 (RCP 4.5) or continues increasing throughout the century (RCP 8.5). Thirty‐six sites evenly distributed across the native range of the species were used in the analysis. These sites represent a range in current mean annual temperature (14.9–21.6°C) and precipitation (1,120–1,680 mm/year). The site index of each site, which is a measure of growth potential, was varied to represent different levels of management. The 3‐PG model predicted that aboveground biomass growth and net primary productivity will increase by 10%–40% in many parts of the region in the future. At cooler sites, the relative growth increase was greater than at warmer sites. By running the model with the baseline [CO2] or the anticipated elevated [CO2], the effect of CO2 on growth was separated from that of other climate factors. The growth increase at warmer sites was due almost entirely to elevated [CO2]. The growth increase at cooler sites was due to a combination of elevated [CO2] and increased air temperature. Low site index stands had a greater relative increase in growth under the climate change scenarios than those with a high site index. Water use increased in proportion to increases in leaf area and productivity but precipitation was still adequate, based on the downscaled GCM climate projections. We conclude that an increase in productivity can be expected for a large majority of the planted loblolly pine stands in the southeastern United States during this century.  相似文献   

6.
王苗苗  王绍强  陈斌  张心怡  赵健 《生态学报》2023,43(6):2408-2418
CO2施肥效应是全球变绿的主要原因,随着大气中CO2浓度的持续增加,预估未来气候变化条件下,CO2施肥效应对陆地生态系统的影响对减缓全球气候变化具有重大意义。基于未来气候情景数据和Farquhar模型,并结合生态过程模型BEPS(Boreal Ecosystem Productivity Simulator),定量化研究2020—2050年CO2施肥效应对全球叶面积指数(LAI)和总初级生产力(GPP)的影响。研究结果显示2020—2050年,在RCP2.6、RCP4.5和RCP8.5气候情景下,CO2施肥效应导致的LAI年际变化趋势分别为0.002、0.003和0.005 m-2m-2a-1;三个气候情景下CO2施肥效应对LAI的影响为CO2每增加0.1%,LAI平均增加约8.1%—9.2%,由此导致GPP对应增加7.9%—14.6%;由CO2施...  相似文献   

7.
The magnitude of the nitrogen (N) limitation of terrestrial carbon (C) storage over the 21st century is highly uncertain because of the complex interactions between the terrestrial C and N cycles. We use an ensemble approach to quantify and attribute process‐level uncertainty in C‐cycle projections by analysing a 30‐member ensemble representing published alternative representations of key N cycle processes (stoichiometry, biological nitrogen fixation (BNF) and ecosystem N losses) within the framework of one terrestrial biosphere model. Despite large differences in the simulated present‐day N cycle, primarily affecting simulated productivity north of 40°N, ensemble members generally conform with global C‐cycle benchmarks for present‐day conditions. Ensemble projections for two representative concentration pathways (RCP 2.6 and RCP 8.5) show that the increase in land C storage due to CO2 fertilization is reduced by 24 ± 15% due to N constraints, whereas terrestrial C losses associated with climate change are attenuated by 19 ± 20%. As a result, N cycling reduces projected land C uptake for the years 2006–2099 by 19% (37% decrease to 3% increase) for RCP 2.6, and by 21% (40% decrease to 9% increase) for RCP 8.5. Most of the ensemble spread results from uncertainty in temperate and boreal forests, and is dominated by uncertainty in BNF (10% decrease to 50% increase for RCP 2.6, 5% decrease to 100% increase for RCP 8.5). However, choices about the flexibility of ecosystem C:N ratios and processes controlling ecosystem N losses regionally also play important roles. The findings of this study demonstrate clearly the need for an ensemble approach to quantify likely future terrestrial C–N cycle trajectories. Present‐day C‐cycle observations only weakly constrain the future ensemble spread, highlighting the need for better observational constraints on large‐scale N cycling, and N cycle process responses to global change.  相似文献   

8.
Forest undergrowth plants are tightly connected with the shady and humid conditions that occur under the canopy of tropical forests. However, projected climatic changes, such as decreasing precipitation and increasing temperature, negatively affect understory environments by promoting light‐demanding and drought‐tolerant species. Therefore, we aimed to quantify the influence of climate change on the spatial distribution of three selected forest undergrowth plants, Dracaena Vand. ex L. species, D. afromontana Mildbr., D. camerooniana Baker, and D. surculosa Lindl., simultaneously creating the most comprehensive location database for these species to date. A total of 1,223 herbarium records originating from tropical Africa and derived from 93 herbarium collections worldwide have been gathered, validated, and entered into a database. Species‐specific Maxent species distribution models (SDMs) based on 11 bioclimatic variables from the WorldClim database were developed for the species. HadGEM2‐ES projections of bioclimatic variables in two contrasting representative concentration pathways (RCPs), RCP2.6 and RCP8.5, were used to quantify the changes in future potential species distribution. D. afromontana is mostly sensitive to temperature in the wettest month, and its potential geographical range is predicted to decrease (up to ?63.7% at RCP8.5). Optimum conditions for D. camerooniana are low diurnal temperature range (6–8°C) and precipitation in the wettest season exceeding 750 mm. The extent of this species will also decrease, but not as drastically as that of D. afromontana. D. surculosa prefers high precipitation in the coldest months. Its potential habitat area is predicted to increase in the future and to expand toward the east. This study developed SDMs and estimated current and future (year 2050) potential distributions of the forest undergrowth Dracaena species. D. afromontana, naturally associated with mountainous plant communities, was the most sensitive to predicted climate warming. In contrast, D. surculosa was predicted to extend its geographical range, regardless of the climate change scenario.  相似文献   

9.
We investigated the tree growth and physiological response of five pine forest stands in relation to changes in atmospheric CO2 concentration (ca) and climate in the Iberian Peninsula using annually resolved width and δ13C tree‐ring chronologies since ad 1600. 13C discrimination (Δ≈ci/ca), leaf intercellular CO2 concentration (ci) and intrinsic water‐use efficiency (iWUE) were inferred from δ13C values. The most pronounced changes were observed during the second half of the 20th century, and differed between stands. Three sites kept a constant ci/ca ratio, leading to significant ci and iWUE increases (active response to ca); whereas a significant increase in ci/ca resulted in the lowest iWUE increase of all stands at a relict Pinus uncinata forest site (passive response to ca). A significant decrease in ci/ca led to the greatest iWUE improvement at the northwestern site. We tested the climatic signal strength registered in the δ13C series after removing the low‐frequency trends due to the physiological responses to increasing ca. We found stronger correlations with temperature during the growing season, demonstrating that the physiological response to ca changes modulated δ13C and masked the climate signal. Since 1970 higher δ13C values revealed iWUE improvements at all the sites exceeding values expected by an active response to the ca increase alone. These patterns were related to upward trends in temperatures, indicating that other factors are reinforcing stomatal closure in these forests. Narrower rings during the second half of the 20th century than in previous centuries were observed at four sites and after 1970 at all sites, providing no evidence for a possible CO2‘fertilization’ effect on growth. The iWUE improvements found for all the forests, reflecting both a ca rise and warmer conditions, seem to be insufficient to compensate for the negative effects of the increasing water limitation on growth.  相似文献   

10.
Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth–climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km2) in northeastern Siberia using satellite‐derived normalized difference vegetation indices (NDVI), tree ring‐width measurements, and climate data. Mean summer temperatures (Ts) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy). Mean summer NDVI (NDVIs) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub‐dominated areas. NDVIs positively correlated (P < 0.05) with Ts across 56% of the watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring‐width measurements from nine sites revealed that year‐to‐year (i.e., high‐frequency) variation in growth positively correlated (P < 0.05) with June temperature (= 0.40) and prior summer CMI (r = 0.40) from 1938 to 2007. An unexplained multi‐decadal (i.e., low‐frequency) decline in annual basal area increment (BAI) occurred following the mid‐20th century, but over the NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982–2007). Both satellite and tree‐ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations.  相似文献   

11.
为了解秦岭北坡太白红杉(Larix chinensis)的碳源/汇动态,运用BIOME-BGC模型模拟了1959-2016年太白红杉生产力、碳储量和碳利用效率(CUE),并利用气候情景设定方法预测碳源/汇功能的未来趋势。结果表明,58年间太白红杉的平均净初级生产力(NPP)、初级生产力(GPP)和净生态系统生产力(NEP)分别为328.59、501.56和31.42 g C m–2a–1,平均碳储量为35.38 kg C m–2a–1,平均CUE为0.65;除1960-1961、1969-1970、1997-1999年为"碳源"年外,绝大多数年份为"碳汇"年,年内呈现"碳源-碳汇-碳源"的变化特征,碳储量总体增加,潜在固碳能力较为稳定。GPP、NPP、碳储量的正向作用排序为气温上升CO_2浓度增加,NEP的正向作用排序反之,降水增加对生产力和碳储量增加起反作用,气温升高对CUE起反作用;气温和CO_2浓度是北坡太白红杉生长的限制因子,气温的限制性强于CO_2浓度,未来气温或CO_2浓度升高有利于碳汇功能发挥,降水增加减弱碳汇效果。RCP4.5、RCP8.5情景下太白红杉生产力和碳储量在21世纪呈上升趋势,RCP8.5上升幅度略大于RCP4.5,潜在固碳能力仍较强;1-3月和10-12月为"碳源"月,5-9月为"碳汇"月。这揭示了气候变化背景下气温、降水和CO_2浓度对太白红杉碳源/汇的影响方式,气温和CO_2浓度上升是碳汇的促进因素,降水增加为阻碍因素。  相似文献   

12.
Two ecologically and economically important, and threatened Dipterocarp trees Sal (Shorea robusta) and Garjan (Dipterocarpus turbinatus) form mono‐specific canopies in dry deciduous, moist deciduous, evergreen, and semievergreen forests across South Asia and continental parts of Southeast Asia. They provide valuable timber and play an important role in the economy of many Asian countries. However, both Dipterocarp trees are threatened by continuing forest clearing, habitat alteration, and global climate change. While climatic regimes in the Asian tropics are changing, research on climate change‐driven shifts in the distribution of tropical Asian trees is limited. We applied a bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used presence‐only records for the tree species, five bioclimatic variables, and selected two climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) and three global climate models (GCMs) to encompass the full range of variation in the models. We modeled climate space suitability for both species, projected to 2070, using a climate envelope modeling tool “MaxEnt” (the maximum entropy algorithm). Annual precipitation was the key bioclimatic variable in all GCMs for explaining the current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, respectively. In contrast, the consequences of imminent climate change appear less severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, respectively. The findings of this study can be used to set conservation guidelines for Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural habitats of Sal and Garjan can be categorized as low to high risk under changing climates where artificial regeneration should be undertaken for forest restoration.  相似文献   

13.
Predicting long‐term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree‐ring observations spanning North America and a space‐for‐time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water‐use efficiency (WUE) due to CO2‐fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high‐latitude forests, leaving no evidence for continued ‘boreal greening’; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change.  相似文献   

14.
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer‐than‐present conditions in Europe and might be a native substitute for widespread drought‐sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX‐Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX‐Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st‐century multimodel ensemble results for the high‐emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north‐western and southern Europe. Mid‐Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north‐east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer‐than‐present conditions in central Europe.  相似文献   

15.
Terrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = ?8°C to ?1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = ?6°C to ?1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.  相似文献   

16.
《Fungal biology》2022,126(8):511-520
Warming and heat waves are predicted by different climate models in the near future in the Pannonian Biogeographical Region (PBR). These climatic effects may have impact on the prevalence and distribution of certain fungal species of this area. In this study the effects of predicted climate scenarios were tested on fungi being endemic or unintentionally introduced by global trade from regions of warm temperate climate. Common fungal species were selected for the study and exposed to heat waves during 7 days according to two climate scenarios: one moderately (RCP 4.5, Tavg = 27 °C, Tmax = 35 °C, RH: 100%) and one strongly pessimistic (RCP 8.5, Tavg = 30 °C, Tmax = 40 °C, RH: 100%) that include predictions for the Central Hungarian Region for July 2050. According to our results, Aspergillus flavus, Aspergillus niger, Aspergillus tubingensis and Fusarium strains introduced from tropical regions tolerated heat waves, unlike Penicillium and Talaromyces spp. and endemic Cladosporium spp. which were unable to grow under the RCP 8.5 treatment. The effects of climate change on fungi raise new issues not only from economic and health perspectives, but also in relation with plant protection and environment. Our results suggest that heat waves driven by climate change promote the colonization and growth of the tested strains of non-native fungi more likely than that of the native ones.  相似文献   

17.
Ecosystem water‐use efficiency (EWUE) is an indicator of carbon–water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long‐term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982–2008. The seasonal cycle for two variants of EWUE, water‐use efficiency (WUE, GPP/ET), and transpiration‐based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process‐based models and satellite‐based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite‐based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite‐based products. Trend analysis, based on process‐model factorial simulations separating effects of climate, CO2, and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid‐ and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m−2 mm−1 yr−1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.  相似文献   

18.
Models predicting ecosystem carbon dioxide (CO2) exchange under future climate change rely on relatively few real‐world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost‐effective method to estimate CO2 exchange from intact vegetation patches under varying atmospheric CO2 concentrations. We find that net ecosystem CO2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short‐term NEE response to fertilization in such an N‐limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support – diversion of excess carbon to storage compounds – into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long‐standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO2. Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere–atmosphere CO2 exchange in a changing climate.  相似文献   

19.
Given that forests represent the primary terrestrial sink for atmospheric CO2, projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy ‘greenness’ (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) – defined here as drought‐induced decline in GPP without a change in greenness. Current satellite‐derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite‐derived estimates of GPP with eddy‐covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r2 = 0.09) and MMSF (r2 = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r2 = 0.83) and for a severe drought year at the MMSF (r2 = 0.82). Collectively, our results suggest that large‐scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought.  相似文献   

20.
Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate‐related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater‐dependent ecosystems (GDEs) remains poorly known. Here we report long‐term water temperature trends in 66 northern European cold‐water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968–2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high‐emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst‐case scenario, water temperature of these originally cold‐water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring‐fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold‐stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring‐fed streams. Climate change‐induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号