首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this investigation, the effect of pH (4.0–11.0) on waste-activated sludge (WAS) hydrolysis and acidification in the presence of a biosurfactant rhamnolipid (RL) were studied. The results showed that the hydrolysis and acidification of WAS in the presence of RL at alkaline pH values were more efficient than that at acidic and near-neutral pH values. After 6 h of hydrolysis, the soluble protein and carbohydrate were 1,654.7 and 675.9 mg/L (pH 11.0), and 825.6 and 376.0 mg/L (pH 7.0), whereas the values were only 315.0 and 84.0 mg/L at pH 4.0 and 164.1 and 32.0 mg/L for the blank, respectively. After 2 or 3 days of fermentation, the accumulated short-chain fatty acids (SCFAs) reached the highest and then decreased with a further increase in time at all investigated pH values. The analysis of SCFA compositions showed that acetic, propionic, and iso-valeric acids were the three main products at any pH value. A higher pH contributed to a greater proportion of acetic acid and a lesser proportion of iso-valeric acid; a lower pH resulted in a greater proportion of iso-valeric and lesser proportion of acetic acid in the initial fermentation. The proportions of acetic acid for the system with biosurfactant RL addition were 16.65, 36.33, and 62.94 %, respectively, at pH 4.0, 7.0, and 11.0 after 1 day. Correspondingly, the proportions were 40.34, 12.60, and 11.01 % for iso-valeric acid.  相似文献   

2.
Luo K  Yang Q  Yu J  Li XM  Yang GJ  Xie BX  Yang F  Zheng W  Zeng GM 《Bioresource technology》2011,102(14):7103-7110
The combined effect of sodium dodecyl sulfate (SDS) and enzyme system on hydrolysis and acidification of waste activated sludge (WAS) was investigated. The results showed that the combined system was more effective in the promotion of sludge hydrolysis than sole SDS and sole enzyme, and the SDS + mixed-enzymes (ME) system had better hydrolysis performance than SDS + single enzyme system. Compared with SDS + protease and SDS + amylase systems, the soluble protein concentration in SDS + ME system increased respectively by 20.0% and 44.4%, and the soluble carbohydrate concentration increased by 78.3% and 37.0%, respectively. During the WAS acidification stage, the SDS, ME and SDS + ME system could make the maximum short-chain fatty acids (SCFAs) concentration increased by 1.82 (6th day), 2.04 (5th day), 2.32 (7th day) times, respectively. The composition analysis of SCFAs produced in SDS + ME system indicated that acetic acid was the most prevalent product and propionic acid was the second one.  相似文献   

3.
The objective of this study is to summarize the effects of surfactants on anaerobic digestion (AD) of waste activated sludge (WAS). The increasing amount of WAS has caused serious environmental problems. Anaerobic digestion, as the main treatment for WAS containing three stages (i.e. hydrolysis, acidogenesis, and methanogenesis), has been widely investigated. Surfactant addition has been demonstrated to improve the efficiency of AD. Surfactant, as an amphipathic substance, can enhance the efficiency of hydrolysis by separating large sludge and releasing the encapsulated hydrolase, providing more substance for subsequent acidogenesis. Afterwards, the short chain fatty acids (SCFAs), as the major product, have been produced. Previous investigations revealed that surfactant could affect the transformation of SCFA. They changed the types of acidification products by promoting changes in microbial activity and in the ratio of carbon to nitrogen (C/N), especially the ratio of acetic and propionic acid, which were applied for either the removal of nutrient or the production of polyhydroxyalkanoate (PHA). In addition, the activity of microorganisms can be affected by surfactant, which mainly leads to the activity changes of methanogens. Besides, the solubilization of surfactant will promote the solubility of contaminants in sludge, such as organic contaminants and heavy metals, by increasing the bioavailability or desorbing of the sludge.  相似文献   

4.
This paper reports the influence of sulfate-reducing bacterial activity on acidogenic digestion of waste activated sludge (WAS). A series of experiments was conducted by feeding WAS to a 10-l, completely mixed, mesophilic reactor maintained at pH 5.0 under sulfidogenic and non-sulfidogenic conditions. Analyses of volatile fatty acids indicated that the productions of acetic and propionic acids were slightly increased by sulfidogenic activity at 218 mg/l level of sulfate when COD sulfate ratio was 55:1. Higher amounts of methanol, ethanol and hydrogen were observed in the non-sulfidogenic condition, but ammonia was lower than in the moderate sulfidogenic runs. At 0.63 kg VS/m3 d loading rate the hydrolysis was above 90% in both moderate sulfidogenic and non- sulfidogenic runs. The results of these experiments showed the possible influence of moderate sulfidogenesis in the protein degradation of WAS anaerobic digestion. However, the acid-phase digestion was adversely affected by increasing the sulfate concentration to 400 mg/l.  相似文献   

5.
Wang  Qing  Ye  Jianzhong  Fang  Daiqiong  Lv  Longxian  Wu  Wenrui  Shi  Ding  Li  Yating  Yang  Liya  Bian  Xiaoyuan  Wu  Jingjing  Jiang  Xianwan  Wang  Kaicen  Wang  Qiangqiang  Hodson  Mark P.  Thibaut  Lo&#;c M.  Ho  Joshua W. K.  Giannoulatou  Eleni  Li  Lanjuan 《BMC microbiology》2020,20(1):1-14
Actinomyces oris is an early colonizer and has two types of fimbriae on its cell surface, type 1 fimbriae (FimP and FimQ) and type 2 fimbriae (FimA and FimB), which contribute to the attachment and coaggregation with other bacteria and the formation of biofilm on the tooth surface, respectively. Short-chain fatty acids (SCFAs) are metabolic products of oral bacteria including A. oris and regulate pH in dental plaques. To clarify the relationship between SCFAs and fimbrillins, effects of SCFAs on the initial attachment and colonization (INAC) assay using A. oris wild type and fimbriae mutants was investigated. INAC assays using A. oris MG1 strain cells were performed with SCFAs (acetic, butyric, propionic, valeric and lactic acids) or a mixture of them on human saliva-coated 6-well plates incubated in TSB with 0.25% sucrose for 1 h. The INAC was assessed by staining live and dead cells that were visualized with a confocal microscope. Among the SCFAs, acetic, butyric and propionic acids and a mixture of acetic, butyric and propionic acids induced the type 1 and type 2 fimbriae-dependent and independent INAC by live A. oris, but these cells did not interact with streptococci. The main effects might be dependent on the levels of the non-ionized acid forms of the SCFAs in acidic stress conditions. GroEL was also found to be a contributor to the FimA-independent INAC by live A. oris cells stimulated with non-ionized acid. SCFAs affect the INAC-associated activities of the A. oris fimbrillins and non-fimbrillins during ionized and non-ionized acid formations in the form of co-culturing with other bacteria in the dental plaque but not impact the interaction of A. oris with streptococci.  相似文献   

6.
Mineo H  Hara H  Tomita F 《Life sciences》2001,69(5):517-526
We examined the effect of short-chain fatty acids (SCFAs) on Ca absorption from the large intestine in rats in vitro. An Ussing-type chamber technique was used to determine the net transport of Ca from the luminal side to the basolateral side of isolated epithelium in cecum and colon preparations. The concentration of Ca in the serosal and mucosal Tris buffer solution was 1.25 mM and 10 mM, respectively. Both solutions were warmed at 37 degrees C and bubbled with 95% O2 and 5% CO2. During and after the incubation period (30 min or 60 min), the Ca concentration in the serosal medium was determined and the net transepithelial Ca transport was evaluated. The addition of 80 mM acetic acid, 40 mM propionic acid and 10 mM butyric acid to the mucosal medium increased net Ca absorption (about 300%) in the cecum and colon. An individual application of acetic, propionic or butyric acid (0.01 to 100 mM) to the mucosal medium also increased net Ca absorption at doses of 10 mM and /or 100 mM in the cecum and colon. An increase in solute concentration in the mucosal medium by addition of glycerol or PGE400, or a decrease in pH (7.0-3.0) by addition of HCl did not affect transepithelial Ca transport. We concluded that SCFAs affect the epithelial tissue and promote Ca absorption from the large intestine in vitro. The enhancement of Ca transport induced by SCFAs might be involved in the paracellular transport mechanism.  相似文献   

7.
Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.  相似文献   

8.
The interacting effects of Focused Pulsed (FP) treatment and solids retention time (SRT) were evaluated in laboratory-scale digesters operated at SRTs of 2-20 days. Anaerobic digestion and methanogenesis of waste activated sludge (WAS) were stable for SRT ? 5 days, but the effluent soluble organic compounds increased significantly for SRT = 2 days due to a combination of faster hydrolysis kinetics and washout of methanogens. FP treatment increased the CH4 production rate and TCOD removal efficiency by up to 33% and 18%, respectively, at a SRT of 20 days. These effects were the result of an increase in the hydrolysis rate, since the concentrations of soluble components remained low for SRT ? 5 days. Alternately, FP pre-treatment of WAS allowed the same conversion of TCOD to CH4 with a smaller SRT and digester size: e.g., 40% size savings with a CH4 conversion of 0.23 g CH4-COD/g CODin.  相似文献   

9.
Zhuo G  Yan Y  Tan X  Dai X  Zhou Q 《Journal of biotechnology》2012,159(1-2):27-31
The effect of temperature on the hydrolysis and acidification of ultrasonic-pretreated waste activated sludge (WAS) under alkaline conditions was investigated in this study. The experiment temperatures were set at 10, 20, 37, and 55°C. Experimental results showed that the hydrolysis of ultrasonic-pretreated WAS under alkaline conditions increased significantly with temperature from 10 to 55°C, while the volatile fatty acid (VFA) accumulation was not augmented as temperature increased. Among the four temperatures tested, 37°C was the point with the highest VFA accumulation after 72h fermentation. VFA accumulation decreased markedly at 55°C compared to 37°C. Mechanism investigation revealed that among all the temperatures tested, 37°C was the temperature at which consumptions of WAS protein and carbohydrate, activities of key enzymes related to VFA formation and ratio of Bacteria to Archaea all reached the maximum. Due to activities of related microorganisms inhibited by higher temperature (55°C), VFA accumulation decreased at 55°C.  相似文献   

10.
Synthetic wastewater consisting aliphatic acids contained in distillery wastewater from barley-shochu making was treated anaerobically. It was suggested that propionic acid was produced from lactic acid and citric acid via succinic acid. Since it appears to be difficult to treat anaerobically wastewater in which propionic acid is accumulated, we attempted to repress the production of propionic acid during acidification. The amount of propionic acid produced increased with an increase in the hydraulic retention time (HRT) at pH 7. Although the treatment was examined using different pHs at a shorter HRT of 10 h, it was difficult to repress the production of propionic acid.  相似文献   

11.
目的建立一种顶空气相色谱-串联质谱法(HS-GC/MS)快速检测人的粪便、血浆、唾液、呼出气体中短链脂肪酸(SCFAs)的方法,初步探索人的粪便、血浆、唾液、呼出气体中短链脂肪酸的相关性。方法样品无需处理直接封存于顶空进样瓶中,顶空进样;采用DB-FFAP毛细管柱(30 m×0.25 mm×0.25μm)分离;全扫描模式检测。结果人的粪便、血浆、唾液、呼出气体中均含有短链脂肪酸。在人的粪便、唾液样本中均检测到8个短链脂肪酸(乙酸、丙酸、异丁酸、丁酸、异戊酸、戊酸、异己酸、己酸);血浆、呼出气体样本中均检测到7个短链脂肪酸(未检测到异己酸)。结论初步推测人的粪便、血浆、唾液、呼出气体中的短链脂肪酸具有一定的相关性。本方法简单、快速、灵敏,可用于人的生物样品中短链脂肪酸的快速检测。  相似文献   

12.
目的探究孤独症谱系障碍(autism spectrum disorder,ASD)患儿与健康儿童的肠道菌群利用不同碳水化合物产生短链脂肪酸(short-chain fatty acids,SCFAs)的差异。方法前瞻性病例对照研究。选择2016年12月至2017年10月解放军总医院儿科门诊的15例ASD患儿为研究对象,并匹配15名健康儿童为对照组;收集研究对象粪便,稀释成10%悬浊液,然后分别接种到以乳果糖(LAU)、乳糖(LAT)、棉籽糖(RAF)、低聚半乳糖(GOS)、低聚异麦芽糖(IMO)和低聚甘露糖(MOS)为单碳源的肠道微生态小型模拟发酵系统中批量发酵24 h,检测SCFAs浓度、底物降解率和产气气压。结果 ASD组患儿粪便SCFAs浓度与对照组差异无统计学意义,在YCFA(无碳源对照培养基,蛋白发酵为主)培养基发酵后总SCFAs、乙酸和丙酸均低于对照组,差异有统计学意义(Z=-2.509、-2.509、-3.007,P=0.011、0.011、0.002);在添加LAT、RAF、GOS、IMO和MOS的培养基发酵后总SCFAs浓度显著高于对照组,差异有统计学意义(Z=2.385、2.344、2.675、2.344、2.302,P=0.016、0.019、0.007、0.019、0.021),而含LAU的培养基发酵后,两组研究对象总SCFAs浓度比较差异无统计学意义。结论 ASD患儿肠道菌群利用蛋白发酵产SCFAs能力显著低于健康对照,利用碳水化合物产SCFAs能力显著高于健康对照。6种发酵底物中,乳果糖是最适合ASD患儿的碳水化合物,有改善ASD患儿肠道菌群产SCFAs的潜力。  相似文献   

13.
This work focuses on fermentation of pre-treated waste activated sludge (WAS) to generate volatile fatty acids (VFAs). Pre-treatment by high-pressure thermal hydrolysis (HPTH) was shown to aid WAS fermentation. Compared to fermentation of raw WAS, pre-treatment enabled a 2-5x increase in VFA yield (gVFA(COD)gTCOD(-1)) and 4-6x increase in VFA production rate (gVFA(COD) L(-1) d(-1)). Three sludges, pre-treated in full-scale HPTH plants, were fermented. One was from a plant processing a mix of primary sludge and WAS and the other two from plants processing solely WAS. The HPTH plants solubilised suspended matter, evidenced by a 20-30% decrease in suspended solids and an increase of soluble COD : total COD from 0.04 to 0.4. Fermentation of the three sludges yielded similar VFA concentrations (15-20gVFA(COD) L(-1)). The yields were largely independent of retention time (1 d-6 d) and temperature (42°C, 55°C). Also, the product spectrum depended mostly on the composition of the sludge rather than on operating conditions.  相似文献   

14.
Microplastics (MPs) are microscopic particles that are now found in almost all ecosystems where they may exert adverse effects on various organisms, including insects. In this study, 20 black soldier fly (Hermetia illucens) larvae (BSFL) were exposed to MPs, in the form of polypropylene (PP-MPs; 55 ± 4 µm) at 0.22% (26,972,507 particles/kg), versus a control (no added MPs) in triplicate for two weeks. After two weeks, final lengths, weights, percentage of pupation, fatty acid composition of BSFL and substrate reduction percentage were measured. Survival, lengths/weights and percentage substrate reduction in the PP-MP group were not significantly different from the control. However, percentage of pupation was significantly lower in the PP-MP treatment (at 65.2%) compared to the control (at 83.8%). Among the measured fatty acids, only propionic and butyric acid changed, and these short-chain fatty acids (SCFAs) significantly increased from 0.12% and 0.17% to 0.14 and 0.19%, respectively, in the PP-MP-exposed group. This study indicates that exposure to environmentally relevant levels of PP-MPs can substantially delay development, while the increase in the SCFA may indicate a change in the gut microbiota.  相似文献   

15.
Batch propionic acid fermentation of lactose by Propionibacterium acidipropionici were studied at various pH values ranging from 4.5 to 7.12. The optimum pH range for cell growth was between 6.0 and 7.1, where the specific growth rate was approximately 0.23 h(-1). The specific growth rate decreased with the pH in the acids have been identified as the two major fermentation products from lactose. The production of propionic acid was both growth and nongrowth associated, while acetic acid formation was closely associated with cell growth. The propionic acid yield increased with decreasing pH; It changed from approximately 33% (w/w) at pH 6.1-7.1 to approximately 63% at pH 4.5-5.0. In contrast, the acetic acid yield was not significantly affected by the pH; it remained within the range of 9%-12% at all pH values. Significant amounts of succinic and pyruvic acids were also formed during propionic acid fermentation of lactose. However, pyruvic acid was reconsumed and disappeared toward the end of the fermentation. The succinic acid yield generally decreased with the pH, from a high value of 17% at pH 7.0 to a low 8% at pH 5.0 Effects of growth nutrients present in yeast ex-tract on the fermentation were also studied. In general, the same trend of pH effects was found for fermentations with media containing 5 to 10 g/L yeast extract. However, More growth nutrients would be required for fermentations to be carried out efficienytly at acidic pH levels.  相似文献   

16.
Corn meal hydrolyzed with amylases was used as the carbon source for producing acetic, propionic, and butyric acids via anaerobic fermentations. In this study, corn meal, containing 75% (w/w) starch, 20% (w/w) fibers, and 1.5% (w/w) protein, was first hydrolyzed using amylases at 60 degrees C. The hydrolysis yielded approximately 100% recovery of starch converted to glucose and 17.9% recovery of protein. The resulting corn meal hydrolyzate was then used, after sterilization, for fermentation studies. A co-culture of Lactococcus lactis and Clostridium formicoaceticum was used to produce acetic acid from glucose. Propionibacterium acidipropionici was used for propionic acid fermentation, and Clostridium tyrobutylicum was used for butyric acid production. These cells were immobilized on a spirally wound fibrous matrix packed in a fibrous-bed bioreactor (FBB) developed for multi-phase biological reactions or fermentation. The bioreactor was connected to a stirred-tank fermentor that provided pH and temperature controls via medium circulation. The fermentation system was operated at the recycle batch mode. Temperature and pH were controlled at 37 degrees C and 7.6, respectively, for acetic acid fermentation, 32 degrees C and 6.0, respectively, for propionic acid fermentation, and 37 degrees C and 6.0, respectively, for butyric acid production. The fermentation demonstrated a yield of approximately 100% and a volumetric productivity of approximately 1 g/(1 h) for acetic acid production. The propionic acid fermentation achieved an approximately 60% yield and a productivity of 2.12 g/(1 h), whereas the butyric acid fermentation obtained an approximately 50% yield and a productivity of 6.78 g/(1 h). These results were comparable to, or better than those fermentations using chemically defined media containing glucose as the substrate, suggesting that these carboxylic acids can be efficiently produced from direct fermentation of corn meal hydrolyzate. The corn fiber present as suspended solids in the corn meal hydrolyzate did not cause operating problem to the immobilized cell bioreactor as is usually encountered by conventional immobilized cell bioreactor systems. It is concluded that the FBB technology is suitable for producing value-added biochemicals directly from agricultural residues or commodities such as corn meal.  相似文献   

17.
Summary A bench scale continuously stirred reactor was used to study the acidogenic phase of the anaerobic fermentation of stillage. The residence time of the effluent in the reactor ranged from 15.7 to 8.2 hours, pH was around 5.0 and temperature was maintained at 35°C. The results indicate that the residence time had no appreciable effect on the production or composition of the organic acids. The main acid products found in the reactor effluent were acetic, propionic and butiric acids.  相似文献   

18.
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short-chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β-glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro-organisms to multiply, and SCFAs concentrations and compositions.  相似文献   

19.
The effects of drinking deaerated water on serum biochemical values, and on the concentrations of short-chain fatty acids (SCFAs) derived from bacterial fermentation in the colon were examined in rats. Drinking deaearted water decreased the levels of serum alkaline phosphatase (SAP) and serum urea nitrogen (SUN), and increased the serum potassium (SK) and serum phosphorus (SP) levels. Although the concentration of propionic acid in the cecum was decreased by drinking deaerated water, the concentrations of isobutyric, valeric, and isovaleric acids in the cecum were increased.  相似文献   

20.
A simple, rapid and sensitive capillary gas chromatographic method was investigated to measure portal short-chain fatty acids (SCFAs). A 200-μl sample of portal plasma was denatured with sulfosalicyclic acid and then extracted with diethyl ether before the removal of protein precipitate. The resultant extract was concentrated by a transfer to 50 μl of 0.2 M NaOH, thus avoiding tedious further concentration steps. This reduced the sample volume to one-fourth. Since the ratio of acetic acid, a major SCFA, to other acids varies widely, ranging from 10-fold to 100-fold, acrylic and methacrylic acids were used as internal standards to simultaneously measure SCFAs having a carbon number of 2–6. As a result, good recovery (90.38–103.17%) and reproducibility (coefficient of variation 0.83–8.85%) were observed over a wide range. Furthermore, portal SCFAs in rats fed various dietary fibers were determined by the present method. We showed that the amounts not only of the major acids such as acetic acid and propionic acid, but also of the minor fermented products such as n-valeric acid and n-caproic acid, could be significantly changed by dietary manipulation. Thus, the present method is simple and reliable, and requires only a small amount of sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号