首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter decomposition and nutrient release of selected dominant synusiae in an old-growth, evergreen, broad-leaved mossy forest on Ailao Mountain, Yunnan, south-west China, were studied over a 22-month period. The species studied were three dominant tall tree species, Lithocarpus xylocarpus Markg., Lithocarpus chintungensis Hsu et Qian and Castanopsis wattii A. Camus; one dominant understory species (the bamboo Sinarundinaria nitida Nakai); and a mixture of dominant mosses (including Homaliodendron scalpellifolium Fleisch, Symphyodon perrottetti Mont., Herberta longifolissa Steph. and Bazzania albicans Horik.). Fast initial litter decomposition was followed by lower rates. Decomposition rates of canopy species and bamboo leaf litter appear to be controlled by the initial concentration of lignin, nitrogen (N) and phosphorus (P) more than by morphological features of the leaves. The decay rate of moss litter was less correlated with nutrient composition and lignin concentration in initial mass. The order of decomposition rates was Castanopsis wattii > L. xylocarpus > L. chintungensis > bamboo > moss. The decomposition rate constants (k) of the leaf litter for the canopy species L. xylocarpus, L. chintungensis and Castanopsis wattii were 0.62, 0.50 and 0.64, respectively, and 0.40 and 0.22 for bamboo and moss, respectively. Turnover time (1/k) for the three canopy species was 1.61 years, 2.0 years and 1.55 years, respectively, and 2.50 years and 4.55 years for bamboo and moss, respectively. The N and P concentration in the decomposing leaf litter increased in the first 6 months and then decreased over the remaining period. There was a relatively rapid initial loss of potassium (K), followed by a slight increase. Each of calcium (Ca) and magnesium (Mg) decreased with time whereas iron (Fe) and manganese (Mn) increased with time to some extent. Nutrient release from decomposing leaf litter was in the order of K > Mg > Ca > N > P > Mn > Fe, except for bamboo (Sinarundinaria nitida) K > Ca > P > N > Mg > Mn > Fe.  相似文献   

2.
Abstract. Seasonal litter fall and mineral element content (N, P, Ca, Mg, K) of regrowth forest communities at the base and on the slope of an inselberg in Ile-Ife, Nigeria, were studied 7 yr after a ground fire ravaged the forest. Litter fall (tha?1 yr?1) was 4.6 (total), 4.2 (leaf), 0.3 (small wood < 2.5 cm diameter) and 0.1 (reproductive parts: fruits and flowers) in the base community and 6.4 (total), 5.4 (leaf), 0.9 (small wood) and 0.1 (reproductive parts) in the slope community. There was significant monthly variation in litter fall in the two communities with lowest amount of litter recorded during the wettest months of the year (May - August) and the highest amount during the dry season. Significant monthly variation (P<0.05) in Ca, Mg and K concentration in leaf litter and for Mg (P < 0.01) in fruit litter occurred, with the lowest concentration recorded during the wettest months (May-August). In leaf and wood litter the order of mineral element concentration was Ca>N>K> Mg > P while in fruit litter it was N > K > Ca > Mg > P. Quantities of mineral element (kg ha-1 yr1) returned to the soil via litterfall were N: 66; P: 4; Ca: 97; Mg: 15; K: 45 in base forest, and N: 112; P: 5; Ca: 142; Mg: 20; K: 66 in slope forest. Through leaf litter >88.5% of these elements was returned into the two communities, through wood > 4.0% and through reproductive organs > 0.3%. The order of quantities of these elements returned in leaf and wood litter was Ca > N > K > Mg > P, in fruit litter N ~ K > Ca > Mg > P. Significant monthly variation in the amounts of the various elements returned were recorded in leaf litter, but not in wood and fruit litter. The lowest amount of various elements was returned during the wettest months (May-August) which coincided with the period of the lowest element concentration and litter fall.  相似文献   

3.
The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen <old intact< fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.  相似文献   

4.
Summary In Jarrah (Eucalyptus marginata Donn ex Sm.) forest of south-western Australia dense germination and regeneration of the native legumeAcacia Pulchella R. Br. can occur following moderate to high intensity fire. The effect of this legume understorey on rate of decomposition and change in nutrient content ofE. marginata litter was investigated using the mesh bag techniques and by examining four components of forest floor litter representing increasing stages of decomposition. E. marginata leaf litter confined in mesh bags lost 37% of its initial dry weight in the first 8 months on the forest floor and 44% of its initial dry weight after 20 months. During this period weight loss was similar for leaf litter located in forest without legume understorey and for leaf litter placed under dense stands ofA. pulchella. MixingA. pulchella litter withE. marginata litter had no significant effect on rate ofE. marginata litter breakdown. The presence of understorey vegetation had a marked effect on chemical composition of decomposingE. marginata leaves. After 8 and 20 months exposure on the forest floor, leaf litter in mesh bags placed underA. pulchella understorey had significantly (P<0.001) higher concentration and contained significantly (P<0.001) greater amounts of N, P, K, S, Ca and Mg than leaf litter placed in areas without legume understorey. This effect was particularly marked for N and P. In forest without legume understorey the amounts of these two nutrients inE. marginata leaf litter changed little during the first 20 months of decomposition, but forE. marginata leaf litter in mesh bags underA. pulchella there were absolute gains of up to 68% in the amount of N and 109% in the amount of P during this period. This represents accumulation of N and P from sources outside the litter bags. The concentration of N, P, S, Ca and Mg were higher at each of the four stages of decomposition in eucalypt leaf litter collected from the forest floor beneathA. pulchella compared to eucalypt leaf litter collected in forest without understorey. Concentrations of N, P and S increased with stage of decomposition. Levels of these three nutrients in eucalypt litter from under the legume were 1.5 to 2.9 fold higher than in the same component of litter from forest without understorey. The effect of legume understorey on nutrient concentrations in the forest floor and on Cielement ratios in decomposing litter is discussed in relation to long term rates of litter breakdown and net mineralisation of litter nutrients.  相似文献   

5.
Calcium, magnesium and potassium dynamics in decomposing litter of three tree species were measured over a two-year period. The speices studied were flowering dogwood (Cornus florida), red maple (Acer rubrum) and chestnut oak (Quercus prinus). The order of decomposition was:C. florida>A. rubrum>Q. prinus.Calcium concentrations increased following any initial leaching losses. However, there were net releases of Ca from all three litter types since mass loss exceeded the increases in concentration. Net release of Ca by the end of two years from all three species combined was 42% of initial inputs in litterfall. Magnesium concentrations increased in the second year, following decreases due to leaching during the first year inC. florida andA. rubrum litter. Net release of Mg by the end of two years was 58% of initial inputs. Potassium concentrations decreased rapidly and continued to decline throughout the study. Net release of K by the end of two years was 91% of initial inputs.These data on cation dynamics, and similar data on N, S and P dynamics from a previous study, were combined with annual litterfall data to estimate the release of selected nutrients from foliar litter of these tree species at the end of one and two years of decomposition. The relative mobility of all six elements examined in relation to mass loss after two years was; K>Mg>mass>Ca>S>P>N.  相似文献   

6.
Summary The seasonal pattern and quantity of litterfall were studied during a two-year period in two unthinned stands ofPinus caribaea Morelet var. hondurensis Barr. and Golf. in Nigeria. Although pine needles were cast continuously throughout the year, the peak period of litterfall occurred in the dry months of March and April. Mean values of annual litterfall were 3068 and 3665 kg/ha in the two stands aged 7–9 and 9–11 years respectively. Nutrient returns in litterfall in the stands had mean values of 15.0, 0.6, 17.3, 18.2 and 6.3 kg/ha of N, P, K, Ca and Mg respectively. Comparatively low amounts of N and P returned in litterfall were attributed to soil deficiencies of the two elements.Measurements of ground litter showed considerable dry matter accumulation (11378 kg/ha) in the litter layers. Estimates of litter decomposition rate and recycling time showed that it would take 3 to 4 years for the organic matter in annual litterfall to decompose completely as contrasted to about 2 to 5 months often reported under mixed nautral savanna vegetation in the same climatic environment. Similar estimates of nutrient recycling time also showed that between 2 to 4 years were required to mineralize nutrient elements in the annual litterfall; the relative mobilities of the elements were in the order K>Mg>P>NCa.  相似文献   

7.
Summary Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.  相似文献   

8.
2010年1-5月在川西高原采用人工雪厚度梯度试验(0、30和100 cm),应用网袋分解法对窄叶鲜卑花叶片凋落物进行分解试验,测定了凋落物的分解速率及其养分动态.结果表明:在无雪被覆盖的样地上分解5个月后的凋落物质量损失率为29.9%,而中雪和深雪样地的凋落物质量损失率分别为33.8%和35.2%.分解过程中,凋落物氮存在一定的富集现象,磷处于波动的富集状态,碳质量分数和碳氮比均呈现前期急剧下降后期逐渐上升的趋势.雪被覆盖显著增加了凋落物的质量损失率和氮含量,而对碳和磷含量无显著影响.在川西高原地区,30 cm以上的持续雪被覆盖能够改变凋落物的分解过程,从而可能对土壤营养物质转化和植物群落构建产生实质性的影响.  相似文献   

9.
以常宁油茶低产林为研究对象,分析了油茶低产林树体各器官及土壤养分时间动态变化。结果表明:油茶低产林树体在不同生长期需求的大量元素均为全N、Ca和全K最多,而需求的Mg和全P最少;需求的微量元素均为Mn和Fe最多,Cu和Cd最少;春梢期供应的土壤养分元素是速效N和Mg,夏梢期主要供应的土壤元素是速效K、全N、全P、Fe和有机质,果实成熟期主要供应的土壤养分元素是全K,开花期主要供应的土壤元素是速效P和Ca;不同时间油茶低产林养分需求为春梢期(28.36%)夏梢期(26.17%)果实成熟期(22.75%)开花期(22.73%);土壤养分供应为夏梢期(2999.83±87.04 mg/kg)果实成熟期(2703.93±292.26 mg/kg)开花期(2554.60±508.84 mg/kg)春梢期(2385.88±199.62 mg/kg);油茶低产林在不同生长期需要的养分和土壤供应的养分并不一一对应。研究结果可为油茶低产林的施肥时间配置和养分时间变化提供科学依据,在春梢期多施肥。  相似文献   

10.
四种金花茶组植物叶片金属元素含量及富集特性研究   总被引:1,自引:0,他引:1  
以四种金花茶组植物为研究对象,采用原子吸收光谱法和原子荧光法,测定其嫩叶、老叶及对应土壤中Mg、Ca、Mn、Fe、Zn、Ni、Se、Pb、Cd、Hg、As共11种元素的含量,并分别计算嫩叶和老叶对土壤金属元素的富集系数.结果表明:(1)4种金花茶组植物叶片富含Mg、Ga、Mn、Fe、Zn、Ni等营养元素,各元素在叶片中含量为Ca>Mg>Mn>Fe>Zn>Ni>Se;Pb、Cd、As、Hg等重金属元素含量较低,均达到无公害茶叶标准.(2)老叶和嫩叶中各金属元素含量差异较大,老叶中的Ca、Mn、Fe、Zn、Pb、Cd、Hg、As、Se元素含量均大于嫩叶,尤以Ca、Mn、Fe差异显著;嫩叶中的Mg和Ni含量大于老叶.(3)金花茶组植物对不同金属元素的富集能力不同,对各元素富集能力强弱为Ca、Mn、Mg>Zn、Ni、Hg>Pb、Se>Fe、As,老叶和嫩叶的富集规律存在差异.(4)不同金花茶组植物对金属元素的富集能力有较大差异,龙州金花茶(Camellia longzhouensis)和黄花抱茎茶(C.murauchii)对Mg、Ca、Mn、Zn、Ni、Se、Pb的富集能力均大于金花茶(C.nitidissima)和毛籽金花茶(C.ptilosperma).其中,龙州金花茶对Mg、Mn、Se的富集能力最强,黄花抱茎茶对Ca、Pb、Hg富集能力最强,金花茶对Hg的富集能力较强,对其它元素的富集能力均较弱;毛籽金花茶对Ca、Mn、Ni、Zn的富集能力均最弱.该研究结果为金花茶组植物的进一步开发和利用提供了理论依据.  相似文献   

11.
We studied litter decomposition and nutrient release in a tropical seasonal rain forest of Xishuangbanna, Southwest China. The monthly decay rates (k) of leaf litter ranged from 0.02 to 0.21/mo, and correlated with rainfall and soil moisture. Annual k values for leaf litter (1.79/yr) averaged 4.2 times of those for coarse wood (2.5–3.5 cm in diameter). The turnover coefficients of forest floor mass (annual litterfall input/mean floor mass) were: 4.11/yr for flowers and fruits, 2.07/yr for leaves, and 1.17/yr for fine wood (≤2 cm in diameter), with resident time decreasing from fine woods (0.85 yr) to leaves (0.48 yr) and to flower and fruits (0.24 yr). Nutrient residence times in the forest floor mass were ranked as: Ca (1.0 yr) > P (0.92 yr) > Mg (0.64 yr) > N (0.36 yr) > K (0.31 yr). Our data suggest that rates of litter decomposition and nutrient release in the seasonal rain forest of Xishuangbanna are slower than those in typical lowland rain forests, but similar to those in tropical semideciduous forests.  相似文献   

12.
应用分解网袋法对暖温带落叶阔叶林内分布较为优势的辽东栎(Quercus liaotungensis)、五角枫(Acermono)、蒙椴(Tilia mongolica)、糠椴(T.mandshurica)等4种植物叶片凋落物第一年的分解速率损失过程基本符合Olson的指数降解模型。4种凋落物的分解速率(凋落物的年重量损失)依次为五角枫>糠椴>蒙椴>辽乐栎。N、P、Na、Fe、Cu、Mn在几种凋落物残留物中各自有不同程度的富集。C、K含量显著单调下降,其它几种元素含量变化不太规律。可以看出,元素的初始含量对其释放速率有很大影响,当微生物固持作用使C与其它元素比升高到某一阈值时,元素开始释放;初始含量较高的元素则从最初开始释放。高含量的木质素对元素的净释放有一定抑制作用,而在凋落物分解初期影响不大。  相似文献   

13.
Xu  Xiaoniu  Hirata  Eiji  Enoki  Tsutomu  Tokashiki  Yoshihiro 《Plant Ecology》2004,173(2):161-170
Decomposition of typhoon-generated and normal leaf litter and their release patterns for eight nutrient elements were investigated over 3 yr using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. Two common tree species, Castanopsis sieboldii and Schima wallichii, representative of the vegetation and differing in their foliar traits, were selected. The elements analyzed were N, P, K, Ca, Mg, Na, Al, Fe and Mn. Dry mass loss at the end of study varied in the order: typhoon green leaves > typhoon yellow leaves > normal leaves falling for both species. For the same litter type, Schima decomposed faster than Castanopsis. Dry mass remaining after 2 yr of decomposition was positively correlated with initial C:N and C:P ratios. There was a wide range in patterns of nutrient concentration, from a net accumulation to a rapid loss in decomposition. Leaf litter generated by typhoons decomposed more rapidly than did the normal litter, with rapid losses for N and P. Analysis of initial quality for the different litter types showed that the C:P ratios were extremely high (range 896 – 2467) but the P:N ratios were < 0.05 (range 0.02 – 0.04), indicating a likely P-limitation for this forest. On average 32% less N and 60% less P was retranslocated from the typhoon-generated green leaves than from the normal litter for the two species, Castanopsis and Schima. An estimated 2.13 g m–2 yr–1 more N and 0.07 g m–2 yr–1 more P was transferred to the soil as result of typhoon disturbances, which were as high as 52% of N and 74% of P inputted from leaf litter annually in a normal year. Typhoon-driven maintenance of rapid P cycling appears to be an important mechanism by which growth of this Okinawan subtropical forest is maintained.  相似文献   

14.
Active restoration strategies increase the production of leaf litter in tropical forests, but little is known about their effect on litter decomposition and subsequent nutrient release. We quantified changes in leaf litter stoichiometry during decomposition in former pasture sites under contrasting restoration strategies (natural regeneration, applied nucleation/islands tree planting and plantation), as well as in nearby primary forest. Litterbags were employed to evaluate decomposition. We used a leaf mixture of either the four planted tree species in the plantation and island treatments or the nearby primary forest and compared them under a factorial design. Decomposition rates were similar between restoration treatments (p > 0.5), but leaves decomposed faster in the forest mixture than in the plantation mixture (p < 0.01). The content of Ca, Mg, K, P, and the C:N ratio were higher in the forest mixture at the beginning and during decomposition (p < 0.05); the N content in the plantation mixture was higher at the beginning but lower during decomposition (p < 0.05), which meant greater mobilization of nitrogen per unit of carbon lost. K and P had a strong initial release, while Mg was released more gradually. N and Ca had an irregular pattern of initial fast release, immobilization, and re‐release in the later stages. We conclude that the differences in rates of decomposition and nutrient release in these systems under restoration were at least partly determined by the floristic heterogeneity and chemical quality of the leaf litter that reaches the soil.  相似文献   

15.
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.  相似文献   

16.
以贵州8年、16年、28年生杉木人工林为研究对象,分析植物-凋落叶-土壤的C、N、P化学计量特征及其内在联系,探讨林龄对杉木人工林生态化学计量的影响,为杉木人工林可持续经营提供参考。结果表明:(1)杉木人工林植物-凋落叶-土壤均呈高C低N、P元素格局,两两组分间差异显著(P0.05);成熟叶C/N(38.58)、C/P(376.67)偏低,其养分利用效率较低;与成熟叶相比,凋落叶N、P偏低,C/N、C/P偏高;土壤C/P、N/P偏低,C/N较高,说明土壤P素分解较快而N保存较好,反映了凋落叶分解不利。(2)成熟叶C、P以及根、凋落叶、土壤的C、N、P、C/N、C/P、N/P均受林龄的显著影响;从8年到28年,C、N、P含量在植物体呈先增后减趋势,而在土壤中相反,呈先减后增趋势,但在凋落物中C、P显著减小,且C/P,N/P显著增加,反映杉木林早期对养分需求旺盛,随年龄增大需求减小,凋落物分解受制于P素,加剧中幼期杉木生态系统养分供需矛盾。(3)成熟叶与凋落叶N、C/N、N/P之间显著正相关,凋落叶养分源自成熟叶;成熟叶重吸收率P(0.518—0.645)N(0.292—0.488),即对P的利用效率高于N。凋落叶与土壤C、C/N之间显著负相关,表明土壤C、N来源于凋落叶分解,但凋落叶分解缓慢,导致大量元素滞留于凋落叶,土壤损耗元素得不到补给,两者间养分循环缓慢。土壤与根C、P、C/N、C/P、N/P之间均显著正相关,土壤与成熟叶的C、N、P均不相关,表明土壤养分是杉木生长养分的主要来源,但土壤C、N、P含量对成熟叶C、N、P含量影响不大。  相似文献   

17.
The nutrient cycling and foliar status for the elements Ca, Mg, K, N, P, S, Fe, Mn, Zn and Cu were investigated in an urban forest of Aleppo pine (Pinus halepensis) in 2004 in Athens, Greece in order to draw conclusions on the productivity status and health of the ecosystem. The fluxes of bulk and throughfall deposition were characterized by the high amounts of Ca, organic N and sulfate S. The magnitude of the sulfate S fluxes indicated a polluted atmosphere. The nutrient enrichment in throughfall was appreciable for ammonium N, P and Mn. The mineral soil formed the largest pool for all the elements followed by the forest floor, trunk wood and trunk bark. The understory vegetation consisting of annual plants proved important for storing N, P and K. Compared to current year needles of Aleppo pine in remote forests of Spain, the needles of the Aleppo pine trees in Athens had significantly higher concentrations of Ca, N, P and Cu and significantly lower concentrations of Mg and Zn. The soil had a high concentration of calcium carbonate and accordingly high pH values. When all inputs to the forest floor were taken into account, the mean residence time of nutrients in the forest floor followed the order Fe > Mn > Cu > Ca > Mg > P > Zn > N > K > S.  相似文献   

18.
This study compared litter production, litter decomposition and nutrient return in pure and mixed species plantations. Dry weight and N, P, K, Ca, Mg quantities in the litterfall were measured in one pure Cunninghamia lanceolata plantation (PC) and two mixed-species plantations of C. lanceolata with Alnus cremastogyne (MCA) and Kalopanax septemlobus (MCK) in subtropical China. Covering 6 years of observations, mean annual litter production of MCA (4.97 Mg·ha−1) and MCK (3.97 Mg·ha−1) was significantly higher than that of PC (3.46 Mg·ha−1). Broadleaved trees contributed 42% of the total litter production in MCA and 31% in MCK. Introduction of broadleaved tree species had no significant effect on litterfall pattern. Total litterfall was greatest in the dry season from November to March. Nutrient returns to the forest floor through leaf litter were significantly higher in both MCA and MCK than in PC (P < 0.05). The amounts of N, K, and Mg returned to the forest floor through leaf litter were highest in the MCA, and P and Ca returns were highest in the MCK. Percent contribution of broadleaf litter to total nutrient returns ranged from 41.7% to 86.9% in MCA and from 49.3% to 74.8% in MCK. The decomposition rate of individual leaf litter increased in the order: C. lanceolata < K. septemlobus < A. cremastogyne. Litter mixing had a positive effect on decomposition rate of the more recalcitrant litter and promoted nutrient return. Relative to mass loss of A. cremastogyne decomposing alone, higher mass loss of the mixture of C. lanceolata and A. cremastogyne was observed after 330 days of decomposition. These results indicate that mixed plantations of different tree species have advantages over monospecific plantations with regards to nutrient fluxes and these advantages have relevance to restoration of degraded sites. Responsible Editor: Alfonso Escudero.  相似文献   

19.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   

20.
樟树人工林凋落物养分含量及归还量对氮沉降的响应   总被引:3,自引:0,他引:3  
赵晶  闫文德  郑威  李忠文 《生态学报》2016,36(2):350-359
氮沉降的持续增加对陆地生态系统的健康发展构成严重威胁,森林是陆地生态系统中重要的组成部分,大量的氮沉降对其结构和功能造成严重影响。凋落物是森林生态系统养分循环的重要组成部分,它对土壤肥力、森林生态系统养分循环等方面具有重要作用。为了探讨亚热带常绿阔叶森林凋落物对氮沉降增加的响应,在湖南省森林植物园以樟树人工林为研究对象进行模拟氮沉降的实验,实验设置4种氮添加水平CK(0g N m~(-2)a~(-1),对照)、LN(5g N m~(-2)a~(-1)),MN(15g N m~(-2)a~(-1)),HN(30g N m~(-2)a~(-1)),研究氮沉降对樟树林年凋落物量、凋落物养分含量以及归还量的影响。结果表明:不同施氮水平下(CK、LN、MN、HN),樟树林凋落物的年凋落量分别为(4.53±0.32)t hm~(-2)a~(-1)、(3.95±0.28)t hm~(-2)a~(-1)、(3.56±0.41)t hm~(-2)a~(-1)、(4.46±0.48)t hm~(-2)a~(-1),施氮抑制了樟树林的凋落量,且低、中氮处理下差异显著(P0.05);施氮处理后凋落物的养分含量大小顺序为:CNCaKMg,凋落物的碳含量没有显著变化,但氮含量都有所增加,因此,施氮降低了樟树凋落物各组分的C/N比;凋落物中元素的年归还量大小顺序表现为:CNCaKMg,施氮处理对凋落物C、K、Ca、Mg归还量有抑制作用,但对凋落物N归还量表现为促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号