首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
4.
GLABRA3 (GL3) encodes a bHLH protein that interacts with the WD repeat protein, TTG1. GL3 overexpression suppresses the trichome defect of the pleiotropic ttg1 mutations. However, single gl3 mutations only affect the trichome pathway with a modest trichome number reduction. A novel unlinked bHLH-encoding locus is described here, ENHANCER OF GLABRA3 (EGL3). When mutated, egl3 gives totally glabrous plants only in the gl3 mutant background. The double bHLH mutant, gl3 egl3, has a pleiotropic phenotype like ttg1 having defective anthocyanin production, seed coat mucilage production, and position-dependent root hair spacing. Furthermore, the triple bHLH mutant, gl3 egl3 tt8, phenocopies the ttg1 mutation. Yeast two-hybrid and plant overexpression studies show that EGL3, like GL3, interacts with TTG1, the myb proteins GL1, PAP1 and 2, CPC and TRY, and it will form heterodimers with GL3. These results suggest a combinatorial model for TTG1-dependent pathway regulation by this trio of partially functionally redundant bHLH proteins.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Zhou LL  Shi MZ  Xie DY 《Planta》2012,236(3):825-837
Nitrogen nutrients can regulate anthocyanin biosynthesis in Arabidopsis thaliana. In this investigation, we report the nitrogen regulation of anthocyanin biosynthesis activated by TTG1-GL3/TT8-PAP1 in red pap1-D cells. To understand the mechanisms of nitrogen regulation, we employed red pap1-D cells and wild-type cells (as a control) to examine the effects of different nitrogen treatments on anthocyanin biosynthesis. In general, the higher concentrations of ammonium and high total nitrogen tested (e.g., 58.8 and 29.8?mM total nitrogen consisting of NH(4)NO(3) and KNO(3)) reduced the levels and molecular diversity of anthocyanins; in contrast, the lower concentrations of ammonium and total nitrogen conditions (e.g., 9.4?mM KNO(3) and the depletion of nitrogen) increased the levels and molecular diversity of anthocyanins. An expression analysis of the main regulatory and pathway genes showed that at conditions of higher concentrations of ammonium and total nitrogen, the expression levels of PAP1 and TT8 decreased, but the expression levels of LBD37, 38 and 39, three negative regulators of anthocyanin biosynthesis, increased. In addition, the expression levels of the main pathway genes decreased. In contrast, at conditions of lower concentrations of ammonium and total nitrogen, the expression levels of PAP1, TT8 and the main pathway genes increased, whereas those of LBD37, 38 and 39 decreased. These results show that nitrogen regulation of anthocyanin biosynthesis in red cells undergoes a mechanism by which nitrogen controls the expression of genes encoding both main components of the TTG1-GL3/TT8-PAP1 complex and negative regulators. Based on these observations, we propose that the regulatory mechanism of nitrogen may occur via two pathways to control the expression of genes encoding positive and negative regulators in red pap1-D cells.  相似文献   

13.
The control of TT8 expression was investigated in this study, and it was demonstrated that it constitutes a major regulatory step in the specific activation of the expression of flavonoid structural genes. First, the GUS activity generated in planta from a TT8::uidA construct revealed cell-specific activation of the TT8 promoter consistent with the known involvement of the TT8 bHLH factor in proanthocyanidin, anthocyanin and mucilage biosynthesis. Moreover, the activity of this reporter construct was strongly affected in ttg1, TT2 overexpressers (OE), and PAP1-OE, suggesting interplay between TT2, PAP1, TTG1 and the activation of the TT8 promoter in planta. To further investigate the mechanisms involved, we used 35S::TT2-GR and 35S::TTG1-GR transgenic plants (expressing fusion proteins with the glucocorticoid receptor), as well as one-hybrid experiments, to determine the direct effect of these factors on TT8 expression. Interestingly, in vivo binding of TT2 and PAP1 to the TT8 promoter was dependent on the simultaneous expression of TT8 or the homologous bHLH factors GL3 and EGL3. Consistent with these results, the activity of the TT8::uidA reporter was strongly affected in the seed endothelium of a tt8 mutant. Similarly, a strong decrease in the level of TT8 mRNA was detected in the siliques of a gl3 x egl3 mutant and in plants that express a dominant negative form of the PAP1 protein, suggesting that TT8 expression is controlled by different combinations of MYB and bHLH factors in planta. The importance of this positive feedback mechanism in the strong and specific induction of proanthocyanidin biosynthesis in the seed coat of Arabidopsis thaliana is discussed.  相似文献   

14.
Payne CT  Zhang F  Lloyd AM 《Genetics》2000,156(3):1349-1362
Arabidopsis trichome development and differentiation is a well-studied model for plant cell-fate determination and morphogenesis. Mutations in TRANSPARENT TESTA GLABRA1 (TTG1) result in several pleiotropic defects including an almost complete lack of trichomes. The complex phenotype caused by ttg1 mutations is suppressed by ectopic expression of the maize anthocyanin regulator R. Here it is demonstrated that the Arabidopsis trichome development locus GLABRA3 (GL3) encodes an R homolog. GL3 and GLABRA1 (GL1) interact when overexpressed together in plants. Yeast two-hybrid assays indicate that GL3 participates in physical interactions with GL1, TTG1, and itself, but that GL1 and TTG1 do not interact. These data suggest a reiterated combinatorial model for the differential regulation of such diverse developmental pathways as trichome cell-fate determination, root hair spacing, and anthocyanin secondary metabolism.  相似文献   

15.
16.
17.
18.
19.
20.
Arabidopsis trichomes are branched, single-celled epidermal hairs. These specialized cells provide a convenient model for investigating the specification of cell fate in plants. Two key genes regulating the initiation of trichome development are GLABROUS1 (GL1) and TRANSPARENT TESTA GLABRA (TTG). GL1 is a member of the myb gene family. The maize R gene, which can functionally complement the Arabidopsis ttg mutation, encodes a basic helix-loop-helix protein. We used constitutively expressed copies of the GL1 and R genes to test hypotheses about the roles of GL1 and TTG in trichome development. The results support the hypothesis that TTG and GL1 cooperate at the same point in the trichome developmental pathway. Furthermore, the constitutive expression of both GL1 and R in the same plant caused trichomes to develop on all shoot epidermal surfaces. Results were also obtained indicating that TTG plays an additional role in inhibiting neighboring cells from becoming trichomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号