首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为鉴定新的参与黑腹果蝇(Drosophila melanogaster)天然免疫信号通路调控的分子及作用机制,应用果蝇的Gal4/UAS系统敲低54个蛋白质激酶编码基因,分别利用革兰氏阳性菌(Enterococcus faecalis, E.faecalis)或革兰氏阴性菌(Erwinia carototovovora carototovovora 15, Ecc15)感染基因敲低果蝇,筛选参与果蝇天然免疫反应的蛋白质激酶。结果显示,全身性敲低蛋白质激酶Pitslre的果蝇感染E.faecalis或Ecc15 后,生存率降低,半致死时间LT50分别降低为对照组的66.7%和28.6%。相应的,Pitslre功能缺失导致革兰氏阳性菌和阴性菌分别感染后,Toll及IMD通路下游抗菌肽Drosomycin和Diptercin表达水平明显下降。在脂肪体和血淋巴细胞中特异性敲低Pitslre基因,导致革兰氏阳性菌及阴性菌感染后的果蝇半致死时间LT50分别缩短75%和90%,细菌载量分别升高约10倍。在果蝇S2细胞中,敲低Pitslre基因,导致细胞的抗菌肽Drosomycin、Attacin和Diptercin表达水平分别降低约50%。此外,通过免疫共沉淀实验检测Pitslre与预测存在相互作用的蛋白质TSC1、Rcd5和pbl之间的相互作用。综上所述,蛋白质激酶Pitslre参与果蝇天然免疫反应,在正向调控果蝇天然免疫Toll和IMD通路中发挥重要作用。  相似文献   

2.
为鉴定新的参与黑腹果蝇(Drosophila melanogaster)天然免疫信号通路调控的分子及作用机制,应用果蝇的Gal4/UAS系统敲低54个蛋白质激酶编码基因,分别利用革兰氏阳性菌(Enterococcus faecalis, E.faecalis)或革兰氏阴性菌(Erwinia carototovovora carototovovora 15, Ecc15)感染基因敲低果蝇,筛选参与果蝇天然免疫反应的蛋白质激酶。结果显示,全身性敲低蛋白质激酶Pitslre的果蝇感染E.faecalis或Ecc15 后,生存率降低,半致死时间LT50分别降低为对照组的66.7%和28.6%。相应的,Pitslre功能缺失导致革兰氏阳性菌和阴性菌分别感染后,Toll及IMD通路下游抗菌肽Drosomycin和Diptercin表达水平明显下降。在脂肪体和血淋巴细胞中特异性敲低Pitslre基因,导致革兰氏阳性菌及阴性菌感染后的果蝇半致死时间LT50分别缩短75%和90%,细菌载量分别升高约10倍。在果蝇S2细胞中,敲低Pitslre基因,导致细胞的抗菌肽Drosomycin、Attacin和Diptercin表达水平分别降低约50%。此外,通过免疫共沉淀实验检测Pitslre与预测存在相互作用的蛋白质TSC1、Rcd5和pbl之间的相互作用。综上所述,蛋白质激酶Pitslre参与果蝇天然免疫反应,在正向调控果蝇天然免疫Toll和IMD通路中发挥重要作用。  相似文献   

3.
徐皓哲  王璐  王杰  胡文  李榕  刘威 《微生物学通报》2018,45(12):2662-2672
【背景】共生菌对宿主的很多生理功能有着重要影响,但微生物菌群的多样性和复杂性使得探索其潜在的机制存在困难。黑腹果蝇的无菌和悉菌模型可以被用来研究细菌和宿主的相互作用。【目的】分离和鉴定果蝇肠道大肠杆菌,并研究其对宿主生长发育的影响。【方法】利用大肠杆菌选择性培养基分离果蝇肠道大肠杆菌,通过16S rRNA基因序列比对鉴定菌株。利用体外和体内定殖实验验证共生关系。通过果蝇的发育历期和生长速率实验检测该细菌对宿主生长发育的影响。利用RT-qPCR技术对促胸腺激素及胰岛素信号通路相关基因的表达水平进行检测。【结果】从实验室饲养和野生果蝇肠道体内分离并鉴定得到大肠杆菌。体内和体外定殖试验中大肠杆菌可以和果蝇肠道共生菌共存,说明大肠杆菌是果蝇肠道共生菌。另外,大肠杆菌通过提高果蝇生长速率促进其发育。在分子水平上,大肠杆菌可以激活果蝇体内脑促胸腺激素和胰岛素信号通路相关基因的表达。【结论】大肠杆菌是果蝇肠道共生菌并能促进果蝇生长发育。  相似文献   

4.
【背景】共生菌对宿主的很多生理功能有着重要影响,但微生物菌群的多样性和复杂性使得探索其潜在的机制存在困难。黑腹果蝇的无菌和悉菌模型可以被用来研究细菌和宿主的相互作用。【目的】分离和鉴定果蝇肠道大肠杆菌,并研究其对宿主生长发育的影响。【方法】利用大肠杆菌选择性培养基分离果蝇肠道大肠杆菌,通过16S rRNA基因序列比对鉴定菌株。利用体外和体内定殖实验验证共生关系。通过果蝇的发育历期和生长速率实验检测该细菌对宿主生长发育的影响。利用RT-qPCR技术对促胸腺激素及胰岛素信号通路相关基因的表达水平进行检测。【结果】从实验室饲养和野生果蝇肠道体内分离并鉴定得到大肠杆菌。体内和体外定殖试验中大肠杆菌可以和果蝇肠道共生菌共存,说明大肠杆菌是果蝇肠道共生菌。另外,大肠杆菌通过提高果蝇生长速率促进其发育。在分子水平上,大肠杆菌可以激活果蝇体内脑促胸腺激素和胰岛素信号通路相关基因的表达。【结论】大肠杆菌是果蝇肠道共生菌并能促进果蝇生长发育。  相似文献   

5.
【目的】分离与鉴定黑腹果蝇体内醋酸杆菌,并研究其对宿主生长发育的促进作用。【方法】利用醋酸杆菌选择性培养基分离果蝇肠道醋酸杆菌;通过革兰氏染色和16S rRNA基因比对鉴定菌种;肠道定植实验验证共生关系;发育历期和生长速率实验检测其促进果蝇生长作用;免疫荧光染色技术检测肠道细胞增殖;RT-PCR法检测促生长的分子标志物和相关的信号通路。【结果】菌株为东方醋酸杆菌(Acetobacter orientalis),可以持续地定植在果蝇肠道及其培养基中,并且明显促进果蝇的生长。东方醋酸杆菌通过胰岛素信号通路增加肠分裂细胞的数量和促进蜕皮激素的分泌。【结论】东方醋酸杆菌是果蝇的一种共生菌,对果蝇肠道结构和机体发育具有重要的作用。  相似文献   

6.
益生菌通过调整正常菌群缓解酒精性肝损伤的研究进展   总被引:1,自引:0,他引:1  
许多临床试验表明慢性酒精性肝损伤会引起肠道菌群的失调,主要表现为双歧杆菌、乳杆菌数量减少,革兰氏阴性菌大量繁殖,破坏肠道屏障功能,增加肠道通透性,使细菌来源的内毒素大量释放出来,引起血液内毒素增加,并在肝脏中累积,超出肝脏的清除能力,导致肝损伤。本文主要综述益生菌通过调整正常菌群这一机制来缓解酒精性肝损伤的研究进展,进而深入了解酒精引起肠道菌群变化(酒精的摄入会导致肠道中拟杆菌、厚壁菌数量减少,革兰氏阴性变形菌、革兰氏阳性放线菌数量增加,同时肠道内细菌来源的内毒素水平增加)导致肝损伤的发病机制,以及益生菌如何通过调整肠道正常菌群改善酒精性肝损伤。  相似文献   

7.
目的分离和鉴定黑腹果蝇肠道共生微生物,并研究其促进果蝇身体发育的功能。方法利用Hungate滚管技术,分离厌氧细菌;运用定植实验证明其为果蝇肠道共生菌;用悉菌实验来检测细菌对果蝇发育的影响。结果本研究从野外捕获的果蝇体内分离到蜂房哈夫尼菌(Hafnia alvei),而且证实它能够在果蝇肠道内有效地定植并且能在培养基中稳定持续地存在,说明蜂房哈夫尼菌是果蝇肠道共生菌。此外,蜂房哈夫尼菌能显著地缩短无菌果蝇的发育周期及提高生长速率。结论证明了蜂房哈夫尼菌是果蝇肠道的共生菌,并且其可以有效地促进果蝇的生长发育。  相似文献   

8.
植物乳杆菌促进黑腹果蝇生长发育   总被引:1,自引:0,他引:1  
【目的】检测乳酸菌对果蝇发育历期的影响,进一步探讨其对果蝇促生长的分子机制。【方法】利用选择性培养基MRS从黑腹果蝇Drosophila melanogaster体内分离乳酸菌,利用革兰氏染色、生化方法及16S rRNA基因进行鉴定;通过体内定植和世代传递实验验证该菌是黑腹果蝇的共生菌;采用悉生模型检测乳酸菌对黑腹果蝇发育的促生长作用;利用实时定量PCR技术检测黑腹果蝇体内促前胸腺激素基因PTTH和胰岛素通路相关基因InR的表达水平;利用葡萄糖试剂盒检测血淋巴液葡萄糖浓度。【结果】从黑腹果蝇中分离到的菌株鉴定为植物乳杆菌Lactobacillus plantarum FY1菌株(Gen Bank登录号:KY038178),可在黑腹果蝇肠道内定植,每个肠道定植量约为104CFU,并能在世代间稳定传递。FY1菌株体外发酵可降低p H值至5.2,可诱导无菌果蝇卵至蛹发育时间由20.0 d缩短至6.9 d,卵至成虫发育时间由30.0 d缩短至10.7 d,其生长速率是无菌果蝇的约2倍。实时定量PCR结果表明,FY1菌株显著地提前了PTTH表达高峰期,同时降低果蝇中InR表达水平,血淋巴液葡萄糖浓度从5.1 mg/mL降低至2.7 mg/mL。【结论】植物乳杆菌是黑腹果蝇的一种益生菌,推测能通过胰岛素信号通路促进宿主黑腹果蝇的生长和发育。  相似文献   

9.
【目的】本研究旨在揭示果蝇乳酸菌类肠膜魏斯氏菌Weisellas paramesenteroides对黑腹果蝇Drosophila melanogaster生长发育的影响。【方法】利用选择性培养基分离黑腹果蝇成虫肠道乳酸菌,通过16S rRNA基因序列比对鉴定菌株。通过统计从卵至蛹化和羽化的时间检测果蝇发育历期,并以幼虫体表面积为指标检测果蝇生长速率。利用qPCR检测产卵后不同时间生长激素信号通路基因(dib,E74B和PTTH)及胰岛素信号通路基因(DILP2,DILP3和InR)的表达。通过葡萄糖氧化酶法检测3龄幼虫血淋巴中的葡萄糖水平。【结果】从黑腹果蝇成虫肠道内分离到类肠膜魏斯氏菌,并可以在果蝇肠道内有效定殖。类肠膜魏斯氏菌通过提高果蝇生长速率缩短果蝇卵至蛹化和羽化的时间。qPCR结果显示,类肠膜魏斯氏菌增加了dib,E74B和PTTH的表达量,同时增加了DILP2和DILP3的表达量,降低了InR表达量和幼虫血淋巴中的葡萄糖水平。【结论】类肠膜魏斯氏菌是黑腹果蝇的一种共生菌,通过激活蜕皮激素和胰岛素信号通路,促进生长发育。  相似文献   

10.
姚志超  白帅  张宏宇 《微生物学报》2018,58(6):1036-1048
在长期的进化过程中,昆虫形成了独特的肠道防御系统,主要由物理屏障和免疫系统共同作用来抵御外来微生物的入侵。如大部分后生动物一样,昆虫肠道上皮细胞无时无刻不与微生物接触,其种类从有益的共生菌、随食物进入的微生物到影响宿主生命的病原菌。在这样一种复杂的环境中,为了实现防御肠道病原微生物的同时又能维持共生微生物稳定的目的,宿主肠道上皮细胞必须在免疫应激和免疫耐受之间保持一种稳态平衡。Duox-ROS免疫系统和免疫缺陷(immune deficiency,Imd)信号通路作为肠道免疫反应的基本途径,必然参与调节此过程。本文从昆虫肠道防御组成、肠道免疫信号通路作用分子机制以及肠道免疫系统在肠道微生物群落稳态维持中的作用的最新研究进展进行综述。  相似文献   

11.
Peptidoglycan (PGN) exists in both Gram‐negative and Gram‐positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP‐LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP‐LC and IMD (PxPGRP‐LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP‐LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP‐LC and IMD homologs. PxPGRP‐LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP‐LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full‐length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP‐LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella.  相似文献   

12.
【目的】研究东方醋杆菌(Acetobacter orientalis)和短小乳杆菌(Lactobacillus brevis)通过氧气浓度调控黑腹果蝇(Drosophila melanogaster)产卵的偏嗜性,并研究其对后代存活率和发育历期的生物学意义。【方法】利用双相选择装置解析果蝇产卵行为。利用分光光度仪和pH计测量细菌的OD值与pH值。通过改变果蝇的视觉、味觉和嗅觉感官以检测介导果蝇产卵行为的感觉系统。用后代的发育历期与存活率评价其生物学意义。【结果】果蝇产卵对东方醋杆菌具有趋避性,产卵指数为–0.76,对短小乳杆菌具有趋向性,产卵指数为0.5,并且二者接种比例决定了果蝇的产卵选择。氧气作为一个调节因子,可改变果蝇对东方醋杆菌和短小乳杆菌的产卵偏嗜性。氧气是东方醋杆菌生长必需的条件,有氧培养的OD值为1.3,而无氧培养的OD值为0.4。氧气是短小乳杆菌生长非必需的条件,有氧和无氧培养的OD值均为2.2。破坏嗅觉可严重地影响果蝇对细菌的产卵偏嗜性。东方醋杆菌和短小乳杆菌均促进了果蝇的生长,分别提高存活率1倍和1.5倍,分别缩短果蝇发育历期1 d和2 d。【结论】东方醋杆菌和短小乳杆菌可影响果蝇产卵偏嗜性,并且二者比例决定了果蝇的最终产卵选择。东方醋杆菌和短小乳杆菌通过感知氧气浓度的改变而进行不同的代谢方式,从而进一步调节果蝇产卵选择。嗅觉系统介导果蝇对东方醋杆菌和短小乳杆菌的产卵选择行为,从而提高后代存活率和缩短发育时间。  相似文献   

13.
Abstract Insects protect themselves against microbial infection by an efficient innate immune system that is activated by recognition of invariant microbial surface molecules. In the fruit fly Drosophila melanogaster the presence of bacteria is associated with expression of antimicrobial peptides in host immune‐competent tissues. Host receptors detect infection and relay the signal to mount the appropriate immune response. In Drosophila hemocyte‐like l(2)mbn cells pre‐infection treatment with Pefabloc, a commonly used serine protease inhibitor, induced two major effects: it blocked expression of the antibacterial peptide Diptericin in response to live Gram‐negative bacteria and bacterial surface molecules (crude lipopolysaccharide contaminated by peptidoglycans) and it induced morphological changes.  相似文献   

14.
【背景】目前对于如何解决有害真菌对黑腹果蝇的致死性病理研究较少,对共生菌抑制有害真菌的研究引起普遍关注。【目的】检测黑腹果蝇共生菌对病原性真菌的拮抗作用,揭示共生菌提高果蝇的适合度。【方法】利用PDA培养基分离黑腹果蝇食物中真菌;利用形态和rDNAITS基因序列比对进行真菌的鉴定;通过测量菌落直径、孢子数量以及菌丝分枝数量以评定真菌的生长;利用存活率评估病原真菌的毒性;建立无菌和悉生模型,通过发育历期验证其共生菌与病原性真菌的竞争作用;利用双向选择食物装置检测共生菌抑制病原真菌的效果。【结果】从果蝇食物中分离出的真菌经鉴定为拟茎点霉(Phomopsis),可显著地降低成年果蝇的存活率和延缓果蝇发育。东方醋酸杆菌在体外可明显抑制拟茎点霉的生长,有效地减轻拟茎点霉对果蝇的致死作用,挽救了拟茎点霉导致的果蝇发育延滞,改善了果蝇产卵对拟茎点霉的趋避作用。【结论】拟茎点霉是果蝇的一株条件性病原真菌,而东方醋酸杆菌可以有效地减轻拟茎点霉对果蝇生长发育和存活率的损害,从而提高果蝇适合度。  相似文献   

15.
With the complete genome sequence of Drosophila melanogaster defined a systematic approach towards understanding the function of glycosylation has become possible. Structural assignment of the entire Drosophila glycome during specific developmental stages could provide information that would shed further light on the specific roles of different glycans during development and pinpoint the activity of certain glycosyltransferases and other glycan biosynthetic genes that otherwise might be missed through genetic analyses. In this paper the major glycoprotein N- and O-glycans of Drosophila embryos are described as part of our initial undertaking to characterize the glycome of Drosophila melanogaster. The N-glycans are dominated by high mannose and paucimannose structures. Minor amounts of mono-, bi- and tri-antennary complex glycans were observed with GlcNAc and Galβ1–4GlcNAc non-reducing end termini. O-glycans were restricted to the mucin-type core 1 Galβ1-3GalNAc sequence.  相似文献   

16.
17.
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.  相似文献   

18.
Positive and negative regulation of the Drosophila immune response   总被引:2,自引:0,他引:2  
Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of antimicrobial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号