首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize.  相似文献   

2.
Efficient Agrobacterium -mediated transformation of Antirrhinum majus L. was achieved via indirect shoot organogenesis from hypocotyl explants of seedlings. Stable transformants were obtained by inoculating explants with A. tumefaciens strain GV2260 harboring the binary vector pBIGFP121, which contains the neomycin phosphotransferase gene (NPT II) as a selectable marker and the gene for the Green Fluorescent Protein (GFP) as a visual marker. Putative transformants were identified by selection for kanamycin resistance and by examining the shoots using fluorescence microscopy. PCR and Southern analyses confirmed integration of the GFP gene into the genomes of the transformants. The transformants had a morphologically normal phenotype. The transgene was shown to be inherited in a Mendelian manner. This improved method requires only a small number of seeds for explant preparation, and three changes of medium; the overall transformation efficiency achieved, based on the recovery of transformed plants after 4–5 months of culture, reached 8–9%. This success rate makes the protocol very useful for producing transgenic A. majus plants.Communicated by G. Jürgens  相似文献   

3.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

4.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

5.
Two transformation systems, based on the use of CaCl2/PEG and Agrobacterium tumefaciens, respectively, were developed for the zygomycete Rhizopus oryzae. Irrespective of the selection marker used, a pyr4 marker derived from R. niveus or a dominant amdS+ marker from Aspergillus nidulans, and irrespective of the configuration of the transforming DNA (linear or circular), the transformants obtained with the CaCl2/PEG transformation method were found to carry multiple copies of tandemly linked vector molecules, which failed to integrate into the genomic DNA. Furthermore, these transformants displayed low mitotic stability. In contrast, transformants obtained by Agrobacterium-mediated transformation were mitotically stable, even under non-selective conditions. Detailed analysis of these transformants revealed that the transforming DNA had integrated into the genome of R. oryzae at a single locus in independently obtained transformants. In addition, truncation of the transforming DNA was observed, resulting in the integration of the R. niveus pyr4 marker gene, but not the second gene located on the transferred DNA. Modification of the transforming DNA, resulting in partial resistance to restriction enzyme digestion, was observed in transformants obtained with the CaCl2/PEG transformation method, suggesting that a specific genome defence mechanism may exist in R. oryzae. It is likely that the unique mechanism used by A. tumefaciens to deliver its transferred DNA to its hosts facilitates bypass of the host defence mechanisms, thus allowing the DNA to integrate into the chromosomal genome.An erratum to this article can be found at Communicated by C. P. Hollenberg  相似文献   

6.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

7.
8.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

9.
The binary vector pCAMBIA3300-gpdA-hph-trpC with hygromycin B phosphotransferase (hph) was constructed and transformed into Monascus albidus 9901 by Agrobacterium tumefaciens-mediated transformation, with gene hph as the selective marker. In order to improve the efficiency of A. tumefaciens-mediated transformation in M. albidus 9901, we optimized various factors including concentration of M. albidus 9901 spores, cell density of A. tumefaciens, co-cultivation time, temperature, and acetosyringone concentration. Most transformants of M. albidus 9901 could grow stably on media containing 50 μg ml−1 hygromycin B up to five generations. The presence of hph was identified by PCR. Two transformants H1 and H2 which produced more Monacolin K than M. albidus 9901 were screened, and the concentration of Monacolin K in the fermented millet by H1 and H2 increased by 42.15% and 40.34% respectively compared with that produced by M. albidus 9901.  相似文献   

10.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

11.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

12.
Six plasmids carrying a snowdrop lectin (Galanthus nivalis agglutinin, GNA) and one of three selection markers were successfully transferred into two sugarcane cultivars (FN81–745 and Badila) via Agrobacterium-mediated transformation. Agrobacterium strains LBA4404, EHA105 and A281 that harboured a super-binary vector were used for sugarcane transformation. The use of the hygromycin (Hyg) resistance gene (hpt II), phosphinothrincin (PPT) resistance gene (bar) or G418 resistance gene (npt II) as a screenable marker facilitated the initial selection of GNA transgenic sugarcane callus with different efficiencies and helped the rapid segregation of individual transformation events. All the three selective marker genes were controlled by CaMV 35S promoter, while GNA gene was controlled by promoter of RSs-1 (rice sucrose synthase-1) or Ubi (maize ubiquitin). Factors important to successful transformation mediated by Agrobacterium tumefaciens were optimized, which included concentration of A. tumefaciens, medium composition, co-cultivated methods with plant tissue, strain virulence and different selective marker genes. An efficient protocol for sugarcane transformation mediated by A. tumefaciens was established. The GNA gene has been integrated into sugarcane genome as demonstrated by PCR and Southern dot blotting detections. The preliminary results from bioassay demonstrated a significant resistance of the transgenic sugarcane plants to woolly aphid (Ceratovacuna lanigera Zehnther) indicating thus the possibility for obtaining a transgenic sugarcane cultivar with resistance to woolly aphid.  相似文献   

13.
Agrobacterium tumefaciens-mediated transformation (ATMT) has been successfully applied to the violet root-rot fungus Helicobasidium mompa, which is the causal agent of violet root-rot disease. The A. tumefaciens strains carried a binary plasmid vector containing the hygromycin B phosphotransferase gene (hph) controlled by the heterologous fungal Agaricus bisporus P-gpd (glyceraldehyde-3-phosphate dehydrogenase) promoter and the trpC terminator. The transformation system was optimized using defined cocultivation conditions. When H. mompa strain V17 was cocultivated with A. tumefaciens strain AGL-1 using 5% agar, we obtained more hygromycin-resistant colonies than with strains EHA105 or MAFF301222 using 2% agar. In addition, our results suggest that the activated carbon is necessary in ATMT to reduce background growth of H. mompa. The presence of the hph gene in transformants was detected by polymerase chain reaction (PCR), and single-copy integration of the marker gene was demonstrated by Southern blot analysis. Thus, the ATMT system can be considered a promising tool for insertional mutagenesis studies of H. mompa.  相似文献   

14.
We cloned a gene encoding the succinate dehydrogenase iron-sulfur protein subunit (sip) from a bipolar mushroom, Pholiota microspora, and introduced a point mutation that confers carboxin resistance into this gene. Using this homologous selective marker and also a heterologous drug selective marker, the hygromycin B phosphotransferase gene (hph), we successfully constructed a DNA-mediated transformation system in P. microspora. Both these selection markers have high transformation efficiency: the efficiency of carboxin resistance transformation was about 88.8 transformants/μg pMBsip2 DNA using 5 × 106 protoplasts in regeneration plates containing 1.0 μg/ml carboxin, and the efficiency of hygromycin B resistance transformation was about 122.4 transformants/μg pMBhph1 DNA using 5 × 106 protoplasts in regeneration plates containing 150 μg/ml hygromycin B. Southern hybridization analysis showed that the introduced sequence (mutant sip or hph) was integrated into the chromosomal DNA in these transformants with a copy number of one or more.  相似文献   

15.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

16.
Monascus ruber, a red mold species, has been widely used in the fields of food and medicine. In this research, we transformed Monascus ruber spores using Agrobacterium tumefaciens as a tool for random insertional mutagenesis with the hygromycin phosphotransferase gene as the selected marker. Three types of mutants including citrinin-producing mutants, mutants with abnormal aerial hyphae and pigment change mutants were screened for molecular analysis. Southern blot analysis showed that more than 83.3% of transformants contained single T-DNA insertions. The genomic DNA segments of the transformants flanking the T-DNA could be amplified from their left borders with TAIL-PCR. Homologous comparison using the Blast tool showed that none of the isolated DNA sequences had any similarity to each other, suggesting that the T-DNA was randomly integrated into the fungal genome, which provided the hypothetical reason for the variant phenotypes of the transformants. The successful creation of transformants with a single T-DNA tag insertion may help us to clone functional genes related to the metabolism and differentiation of Monascus spp., which will greatly facilitate the molecular analysis of this important fungus and the improvement of strains at the genetic level.  相似文献   

17.
Filamentous fungus Trichoderma reesei QM9414 was successfully transformed with Agrobacterium tumefaciens AGL-1 for random integration of transforming DNA (T-DNA). Co-cultivation of T. reesei conidia or protoplasts with A. tumefaciens in the presence of acetosyringone resulted in the formation of hygromycin B-resistant fungal colonies with high transformation frequency. Nine randomly selected resistant clones were proved to be stable through mitotic cell division. The integration of the hph gene into T. reesei genome was determined by PCR and dot blot analysis. Transgenic T. reesei strains were analyzed using TAIL-PCR for their T-DNA contents. The results showed that T-DNA inserts occurred evidently by fusing DNA at T-DNA borders via random recombination, which suggests that Agrobacterium-mediated transformation is a potentially powerful tool towards tagged mutagenesis and gene transfer technology for T. reesei.  相似文献   

18.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

19.
The present study aimed to obtain analgesic-antitumor peptide (AGAP) gene expression in plants. The analgesic-antitumor peptide (AGAP) gene was from the venom of Buthus martensii Karsch. Previous studies showed that AGAP has both analgesic and antitumor activities, suggesting that AGAP would be useful in clinical situations as an antitumor drug. Given that using a plant as an expression vector has more advantages than prokaryotic expression, we tried to obtain transgenic plants containing AGAP. In the present study, the AGAP gene was cloned into the plasmid pBI121 to obtain the plant expression vector pBI-AGAP. By tri-parental mating and freeze–thaw transformation, pBI-AGAP was transformed into Agrobacterium tumefaciens LBA4404. Tobacco (Nicotiana tabacum) and tomato (Lycopersicom esculentum) were transformed by the method of Agrobacterium-mediated leaf disc transformation. The transformants were then screened to grow and root on media containing kanamycin. Finally, transformations were confirmed by analysis of PCR, RT-PCR and western blotting. The results showed that the AGAP gene was integrated into the genomic DNA of tobacco and tomato and was successfully expressed. Therefore, the present study suggests a potential industrial application of AGAP expressed in plants.  相似文献   

20.
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号