首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myxococcus xanthus is a gram-negative bacterium which, upon starvation, undergoes a spectacular developmental cycle culminating in the formation of spore-filled fruiting bodies. We recently characterized a protein serine-threonine kinase (Pkn1) that is required for normal development (J. Munoz-Dorado, S. Inouye, and M. Inouye, Cell 67:995-1006, 1991). pkn1 was cloned by polymerase chain reaction amplification with primers designed from conserved sequences in eukaryotic protein kinases. In this study, a fragment of the pkn1 gene and an oligonucleotide corresponding to another highly conserved region were employed as probes for Southern blot analyses, which indicated that there are at least 26 putative kinase genes in M. xanthus. Most of the putative kinase genes were cloned, and complete or partial sequencing of eight clones revealed that they indeed contained highly conserved sequences present in eukaryotic kinases. These results suggest that complex kinase cascades similar to those described for eukaryotes might be involved in regulation of the M. xanthus life cycle.  相似文献   

2.
Protein kinases play key roles in cellular functions. They are involved in many cellular functions including; signal transduction, cell cycle regulation, cell division, and cell differentiation. Alterations of protein kinase by gene amplification, mutation or viral factors often induce tumor formation and tumor progression toward malignancy. The identification and cloning of kinase genes can provide a better understanding of the mechanisms of tumorigenesis as well as diagnostic tools for tumor staging. In this study, we have used degenerated polymerase-chain-reaction primers according to the consensus catalytic domain motifs to amplify protein kinase genes (protein-tyrosine kinase, PTK, and protein-serine/threonine kinase, PSK) from human stomach cancer cells. Following amplification, the protein kinase molecules expressed in the gastric cancer cells were cloned into plasmid vectors for cloning and sequencing. Sequence analysis of polymerase-chain-reaction products resulted in the identification of 25 protein kinases, including two novel ones. Expression of several relevant PTK/PSK genes in gastric cancer cells and tissues was further substantiated by RT-PCR using gene-specific primers. The identification of protein kinases expressed or activated in the gastric cancer cells provide the framework to understand the oncogenic process of stomach cancer.  相似文献   

3.
The identification of over 500 protein kinases encoded by the human genome sequence offers one measure of the importance of protein kinase networks in cell biology. High throughput technologies for inactivating genes are producing an awe-inspiring amount of data on the cellular and organismal effects of reducing the levels of individual protein kinases. Despite these technical advances, our understanding of kinase networks remains imprecise. Major challenges include correctly assigning kinases to particular networks, understanding how they are regulated, and identifying the relevant in vivo substrates. Genetic methods provide a way of addressing these questions, but their application requires understanding the nuances of how different types of mutations can affect protein kinases. The goal of this article is to provide a brief introductory primer into these issues using examples from yeast MAPK cascades and to motivate future systematic genetic analysis focusing on individual residues of protein kinases.  相似文献   

4.
G O Kothe  S J Free 《Genetics》1998,149(1):117-130
Using an insertional mutagenesis approach, a series of Neurospora crassa mutants affected in the ability to control entry into the conidiation developmental program were isolated. One such mutant, GTH16-T4, was found to lack normal vegetative hyphae and to undergo constitutive conidiation. The affected gene has been named nrc-1, for nonrepressible conidiation gene #1. The nrc-1 gene was cloned from the mutant genomic DNA by plasmid rescue, and was found to encode a protein closely related to the protein products of the Saccharomyces cerevisiae STE11 and Schizosaccharomyces pombe byr2 genes. Both of these genes encode MAPKK kinases that are necessary for sexual development in these organisms. We conclude the nrc-1 gene encodes a MAPKK kinase that functions to repress the onset of conidiation in N. crassa. A second mutant, GTH16-T17, was found to lack normal vegetative hyphae and to constitutively enter, but not complete, the conidiation program. The affected locus is referred to as nrc-2 (nonrepressible conidiation gene #2). The nrc-2 gene was cloned and found to encode a serine-threonine protein kinase. The kinase is closely related to the predicted protein products of the S. pombe kad5, and the S. cerevisiae YNRO47w and KIN82 genes, three genes that have been identified in genome sequencing projects. The N. crassa nrc-2 gene is the first member of this group of kinases for which a phenotype has been defined. We conclude a functional nrc-2-encoded serine/threonine kinase is required to repress entry into the conidiation program.  相似文献   

5.
Zhang Z  Gurr SJ 《Gene》2001,266(1-2):57-65
Mitogen-activated protein (MAP) kinases represent a group of serine/threonine kinases which play a pivotal role in signal transduction processes in eukaryotic cells. Using degenerate PCR primer design based on published and aligned MAP kinase sequences we have cloned and characterised two MAP kinase genes from the barley powdery mildew fungus, Blumeria graminis. We have utilised 'step down' PCR to attain the full length mildew genomic clones. The single-copy genes, named mpk1 and mpk2, encode putative proteins of 356 and 410 amino acids and carry three and four introns, respectively. Expression studies, using RT-PCR, reveal a differing pattern of tissue gene expression with mpk1 and mpk2 during germling morphogenesis and this is compared with the constitutive expression of the 'control' beta-tubulin gene.  相似文献   

6.
Protein kinases are known to be involved in signal transduction for numerous physiological events. However, little is known about the roles of protein kinases in insect immunity. A fragment around 150 bp was amplified by polymerase chain reaction using cDNA templates from bacterial inoculated mosquitoes and primers corresponding to the conserved domain of protein kinases. Based on sequence analysis, 11 groups of protein kinases were characterized including 3 nonreceptor tyrosine kinases, 3 receptor tyrosine kinases, 3 serine/threonine kinases, and 2 novel protein kinases. The most abundant kinase obtained in this study reveals a high degree of similarity to human cholinesterase-related cell division controller (CHED) protein kinase. The expression of this mosquito CHED-like kinase is not detectable in normal female mosquitoes, but induced only after bacterial inoculation and trauma. A mosquito protein kinase was demonstrated to share homology with a plant Tousled gene, but has not yet been characterized in the animal system. In addition, analysis of the sequences of several protein kinases cloned from mosquitoes suggests that they might be involved in the regulation of cellular or humoral immunity.  相似文献   

7.
A cDNA for branched-chain alpha-ketoacid dehydrogenase kinase was cloned from a rat heart cDNA library. The cDNA had an open reading frame encoding a protein of 382 amino acid residues with a calculated molecular weight of 43,280. The clone codes for the branched-chain alpha-ketoacid dehydrogenase kinase based on the following: 1) the deduced amino acid sequence contained the partial sequence of the kinase determined by direct sequencing; 2) expression of the cDNA in Escherichia coli resulted in synthesis of a 43,000-Da protein that was recognized specifically by kinase antibodies; and 3) enzyme activity that phosphorylated and inactivated the branched-chain alpha-ketoacid dehydrogenase complex was found in extracts of E. coli expressing the protein. Northern blot analysis indicated the mRNA for the branched-chain alpha-ketoacid dehydrogenase kinase was more abundant in rat heart than in rat liver, as expected from the relative amounts of kinase activity expressed in these tissues. The deduced sequence of the kinase aligned with a high degree of similarity within subdomains characteristic of procaryotic histidine protein kinases. This first mitochondrial protein kinase to be cloned appears more closely related in sequence to procaryotic histidine protein kinases than to eucaryotic serine/threonine protein kinases.  相似文献   

8.
Mitogen-activated protein kinases are key-regulatory elements in the differentiation, proliferation, apoptosis and stress response of eukaryotic cells. Our recent identification of a mitogen-activated protein kinase homologue in Leishmania mexicana which is essential for the proliferation of the amastigote stage of the parasite living in the parasitophorous vacuole of the infected macrophage prompted us to screen the genome of L. mexicana for additional mitogen-activated protein kinase homologues using degenerate oligonucleotide primers in a polymerase chain reaction amplification approach. We cloned and sequenced the genes for eight new mitogen-activated protein kinase homologues which were subsequently shown to be present in one copy per haploid genome. The mRNA levels of the kinases varied significantly in pro- and amastigote life stages of the parasite. We used the structural information of the p38 stress-activated protein kinase, which belongs to the family of mitogen-activated protein kinases, for the alignment of the deduced proteins and the verification of the predicted secondary structure elements. All new mitogen-activated protein kinases reveal the typical 12 subdomain primary structure, the conserved residues characterising serine/threonine protein kinases and the characteristic TXY motif in the phosphorylation lip. Typical features of some of the molecules are amino acid insertions between the subdomains and long carboxy-terminal amino acid extensions carrying putative src-homology 3-binding motifs.  相似文献   

9.
10.
This is the first report of a novel serine/threonine kinase, rabbit death-associated protein (DAP) kinase-related apoptosis-inducing protein kinase 1 (rDRAK1), involved in osteoclast apoptosis. We searched for osteoclast-specific genes from a cDNA library of highly enriched rabbit osteoclasts cultured on ivory. One of the cloned genes has a high homology with human DRAK1 (hDRAK1), which belongs to the DAP kinase subfamily of serine/threonine kinases. By screening a rabbit osteoclast cDNA library and 5'-RACE (rapid amplification of cDNA ends), we obtained a full length of this cDNA, termed rDRAK1. The sequencing data indicated that rDRAK1 has 88.0, 44.6, 38.7, and 42.3% identity with hDRAK1, DAP kinase, DRP-1, and ZIP (zipper-interacting protein) kinase, respectively. To clarify the role of DRAK1 in osteoclasts, we examined the effect of three osteoclast survival factors (interleukin-1, macrophage colony-stimulating factor, and osteoclast differentiation-inducing factor) on rDRAK1 mRNA expression and the effect of rDRAK1 overexpression on osteoclast apoptosis. The results suggested that these three survival factors were proved to inhibit rDRAK1 expression in rabbit osteoclasts. After transfection of a rDRAK1 expression vector into cultured osteoclasts, overexpressed rDRAK1 was localized exclusively to the nuclei and induced apoptosis. Hence, rDRAK1 may play an important role in the core apoptosis program in osteoclast.  相似文献   

11.
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.  相似文献   

12.
Mitogen-activated protein (MAP) kinases comprise an evolutionarily conserved family of proteins that includes at least three vertebrate protein kinases (p42, p44, and p55 MAPK) and five yeast protein kinases (SPK1, MPK1, HOG1, FUS3, and KSS1). Members of this family are activated by a variety of extracellular agents that influence cellular proliferation and differentiation. In Saccharomyces cerevisiae, there are multiple physiologically distinct MAP kinase activation pathways composed of structurally related kinases. The recently cloned vertebrate MAP kinase activators are structurally related to MAP kinase activators in these yeast pathways. These similarities suggest that homologous kinase cascades are utilized for signal transduction in many, if not all, eukaryotes. We have identified additional members of the MAP kinase activator family in Xenopus laevis by a polymerase chain reaction-based analysis of embryonic cDNAs. One of the clones identified (XMEK2) encodes a unique predicted protein kinase that is similar to the previously reported activator (MAPKK) in X. laevis. XMEK2, a highly expressed maternal mRNA, is developmentally regulated during embryogenesis and expressed in brain and muscle. Expression of XMEK2 in yeast cells suppressed the growth defect associated with loss of the yeast MAP kinase activator homologs, MKK1 and MKK2. Partial sequence of a second cDNA clone (XMEK3) identified yet another potential MAP kinase activator. The pattern of expression of XMEK3 is distinct from that of p42 MAPK and XMEK2. The high degree of amino acid sequence similarity of XMEK2, XMEK3, and MAPKK suggests that these three are related members of an amphibian family of protein kinases involved in the activation of MAP kinase. Discovery of this family suggests that multiple MAP kinase activation pathways similar to those in yeast cells exist in vertebrates.  相似文献   

13.
Existing data on the structure of human deoxycytidine kinase (dCK) diverge. A monomeric 60 kDa form has been isolated and the cloning of a cDNA coding for 626 amino acids corresponding to a 71 kDa protein has been reported. However, pure dCK isolated from leukemic spleen is a dimer of 30 kDa subunits. Amino acid sequences of peptides from digests of this protein are now presented. None of the peptide structures obtained correspond to the cDNA for the 71 kDa protein, but to a cDNA for a 30.5 kDa dCK recently cloned. Furthermore, homology of the peptide sequences of dCK to parts of thymidine kinases and protein-tyrosine kinases are detected.  相似文献   

14.
S Tong  A Porco  T Isturiz    T Conway 《Journal of bacteriology》1996,178(11):3260-3269
Three genes involved in gluconate metabolism, gntR, gntK, and gntU, which code for a regulatory protein, a gluconate kinase, and a gluconate transporter, respectively, were cloned from Escherichia coli K-12 on the basis of their known locations on the genomic restriction map. The gene order is gntU, gntK, and gntR, which are immediately adjacent to asd at 77.0 min, and all three genes are transcribed in the counterclockwise direction. The gntR product is 331 amino acids long, with a helix-turn-helix motif typical of a regulatory protein. The gntK gene encodes a 175-amino-acid polypeptide that has an ATP-binding motif similar to those found in other sugar kinases. While GntK does not show significant sequence similarity to any known sugar kinases, it is 45% identical to a second putative gluconate kinase from E. coli,gntV. The 445-amino-acid sequence encoded by gntU has a secondary structure typical of membrane-spanning transport proteins and is 37% identical to the gntP product from Bacillus subtilis. Kinetic analysis of GntU indicates an apparent Km for gluconate of 212 microM, indicating that this is a low-affinity transporter. Studies demonstrate that the gntR gene is monocistronic, while the gntU and gntK genes, which are separated by only 3 bp, form an operon. Expression of gntR is essentially constitutive, while expression of gntKU is induced by gluconate and is subject to fourfold glucose catabolite repression. These results confirm that gntK and gntU, together with another gluconate transport gene, gntT, constitute the GntI system for gluconate utilization, under control of the gntR gene product, which is also responsible for induction of the edd and eda genes of the Entner-Doudoroff pathway.  相似文献   

15.
Recently we described a new signal transduction-based tumor therapeutic strategy involving first sensitization of tumor cells by trichostatin A (TSA), an inhibitor of histone deacetylation, and thereafter efficient apoptotic triggering by ribotoxic agents, which activate stress-activated protein kinases. In the present work we investigate the molecular basis of the sensitization step in this therapeutic model system and describe TSA-induced changes in mRNA and protein expression of several candidate genes identified previously by complex hybridization. Furthermore, activities of 15 different protein kinases were followed after TSA application, using a new filter-based technique (PhosphoSpots-Assay). The obtained data suggest that TSA induces pro-apoptotic genes like ID1, ID2, ID3, and down-regulates anti-apoptotic genes like Hsp27 and Bcl-xL, thereby shifting the cellular equilibrium from life to death. Furthermore, activities of calcium/calmodulin-dependent kinase II and protein kinase C, which have been assigned pro-apoptotic function in other systems, are induced.  相似文献   

16.
In plants, calcium acts as a universal second messenger in various signal transduction pathways. The plant-specific calcium-dependent protein kinases (CDPKs) play important roles regulating downstream components of calcium signaling. We conducted a genome-wide analysis of rice CDPKs and identified 29 CDPK genes and eight closely related kinase genes, including five CDPK-related kinases (CRKs), one calcium and calmodulin-dependent protein kinase (CCaMK) and two phosphoenolpyruvate (PEP) carboxylase kinase-related kinases (PEPRKs). The mRNA splicing sites of the rice CDPKs, CRKs and PEPRKs (but not OsCCaMK) are highly conserved, suggesting that these kinases are derived from a common ancestor. RNA gel blot analyses revealed that the majority of rice CDPK genes exhibited tissue-specific expression. Expression of OsCPK9 was elevated in seedlings infected by rice blast, indicating that this gene plays an important role in signaling in response to rice blast treatment. Our genomic and bioinformatic analyses will provide an important foundation for further functional dissection of the rice CDPK gene family.  相似文献   

17.
Gosal G  Kochut KJ  Kannan N 《PloS one》2011,6(12):e28782

Background

Protein kinases are a large and diverse family of enzymes that are genomically altered in many human cancers. Targeted cancer genome sequencing efforts have unveiled the mutational profiles of protein kinase genes from many different cancer types. While mutational data on protein kinases is currently catalogued in various databases, integration of mutation data with other forms of data on protein kinases such as sequence, structure, function and pathway is necessary to identify and characterize key cancer causing mutations. Integrative analysis of protein kinase data, however, is a challenge because of the disparate nature of protein kinase data sources and data formats.

Results

Here, we describe ProKinO, a protein kinase-specific ontology, which provides a controlled vocabulary of terms, their hierarchy, and relationships unifying sequence, structure, function, mutation and pathway information on protein kinases. The conceptual representation of such diverse forms of information in one place not only allows rapid discovery of significant information related to a specific protein kinase, but also enables large-scale integrative analysis of protein kinase data in ways not possible through other kinase-specific resources. We have performed several integrative analyses of ProKinO data and, as an example, found that a large number of somatic mutations (∼288 distinct mutations) associated with the haematopoietic neoplasm cancer type map to only 8 kinases in the human kinome. This is in contrast to glioma, where the mutations are spread over 82 distinct kinases. We also provide examples of how ontology-based data analysis can be used to generate testable hypotheses regarding cancer mutations.

Conclusion

We present an integrated framework for large-scale integrative analysis of protein kinase data. Navigation and analysis of ontology data can be performed using the ontology browser available at: http://vulcan.cs.uga.edu/prokino.  相似文献   

18.
Diverse biological events are regulated through protein phosphorylation mediated by protein kinases. Some of these protein kinases are known to be involved in the pathogenesis of various diseases. Although 518 protein kinase genes were identified in the human genome, it remains unclear how many and what kind of protein kinases are expressed and activated in cells and tissues under varying situations. To investigate cellular signaling by protein kinases, we developed monoclonal antibodies, designated as Multi-PK antibodies, that can recognize multiple protein kinases in various biological species. These Multi-PK antibodies can be used to profile the kinases expressed in cells and tissues, identify the kinases of special interest, and analyze protein kinase expression and phosphorylation state. Here we introduce some applications of Multi-PK antibodies to identify and characterize the protein kinases involved in epigenetics, glucotoxicity in type 2 diabetes, and pathogenesis of ulcerative colitis. In this review, we focus on the recently developed technologies for kinomics studies using the powerful analytical tools of Multi-PK antibodies.  相似文献   

19.
环境胁迫下植物MAPK多叠级联响应(英文)   总被引:9,自引:0,他引:9  
Plant mitogen-activated protein kinases(MAPKs) are involved in growth,evelopment and responses to endogenous and environmental cues.which link stimuli that areactivated by external sensors to cellular responses.In Arabidopsis,as amodel,all of MAP kinase genes have been listed and classified.Based on the Arabidopsis MAPK families.a number of MAPk inase genes in other plant species have been recently isolated and classified.Most of the cloned MAPk inase genes can be activated by avariety of stresss timuli including pathogen infection.wounding.temperature,drought.salinity.osmolarity.UV irradiation.ozone and reactive oxygen species.Some tools and strategies are used to investigate their functions and signal pathways under different environmental stresses.indicating complexity and crosstalk of plant MAPk inase signaling pathways.It is still necessary to explore more novel tools and strategies to clarify MAPK signaling pathways,and how to apply the MAPK cascade to improve the resistance of crop to abiotic and biotic stress  相似文献   

20.
Two cDNA clones, cATMPK1 and CATMPK2, encoding MAP kinases (mitogen-activated protein kinases) have been cloned from Arabidopsis thaliana and their nucleotide sequences have been determined. Putative proteins encoded by ATMPK1 and ATMPK2 genes, designated ATMPK1 and ATMPK2, contain 370 and 376 amino acid residues, respectively, and are 88.7% identical at the amino acid sequence level. ATMPK1 and ATMPK2 exhibit significant similarity to rat ERK2 (49%) and Xenopus MAP kinase (50%). The amino acid residues corresponding to the sites of phosphorylation (Thr-Glu-Tyr) that are involved in the activation of MAP kinases are conserved in ATMPK1 and ATMPK2. Northern blot analysis indicates that the ATMPK1 and ATMPK2 mRNAs are significantly present in all the organs except seeds. Genomic Southern blot analysis suggests that there are a few additional genes that are related to ATMPK1 and ATMPK2 in the Arabidopsis genome. Purified Xenopus MAP kinase kinase (MAPK kinase) phosphorylates ATMPK1 and ATMPK2 proteins that have been expressed in Escherichia coli, activating these enzymes. A rapid and transient activation of 46-kDa protein kinase activity that phosphorylated myelin basic protein (MBP) was detected when auxinstarved tobacco BY-2 cells were treated with synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D). Protein kinase activities which phosphorylated the recombinant ATMPK2 protein also increased rapidly after auxin treatment in the auxin-starved BY-2 cells. These results suggest that auxin may function as an activator of plant MAP kinase homologues, as do various mitogens in animal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号