首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals(photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.  相似文献   

2.
Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental Information. The oxylipin pathway Is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxyllpln pathway Induces the de novo synthesis of biologically active metabolltes called "oxyllplns". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxyllpln pathway, allene oxide synthase (AOS) and hydroperoxlde lyase (HPL) are responsible for production of the signaling compounds, jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways In rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights Into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations In monocots and dicots.  相似文献   

3.
4.
5.
The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MAPK genes have been Identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MAPK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MAPK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signaling pathway in rice crops for the Improvement of agronomically important traits.  相似文献   

6.
Metabolic Engineering of Tropane Alkaloid Biosynthesis in Plants   总被引:8,自引:0,他引:8  
Over the past decade, the evolving commercial importance of so-called plant secondary metabolites has resulted in a great interest in secondary metabolism and, particularly, in the possibilities to enhance the yield of fine metabolites by means of genetic engineering. Plant alkaloids, which constitute one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the tropane alkaloids biosynthesis pathways have been cloned, making the metabolic engineering of these alkaloids possible. The content of the target chemical scopolamine could be significantly increased by various approaches, such as introducing genes encoding the key biosynthetic enzymes or genes encoding regulatory proteins to overcome the specific rate-limiting steps. In addition, antisense genes have been used to block competitive pathways. These investigations have opened up new, promising perspectives for increased production in plants or plant cell culture. Recent achievements have been made in the metabolic engineering of plant tropane alkaloids and some new powerful strategies are reviewed in the present paper.  相似文献   

7.
Identification and characterization of new plant microRNAs using EST analysis   总被引:50,自引:0,他引:50  
Seventy-five previously known plant microRNAs (miRNAs) were classified into 14 families according to their gene sequence identity. A total of 18,694 plant expressed sequence tags (EST) were found in the GenBank EST databases by comparing all previously known Arabidopsis miRNAs to GenBank‘s plant EST databases with BLAST algorithms. After removing the EST sequences with high numbers (more than 2) of mismatched nucleotides, a total of 812 EST contigs were identified. After predicting and scoring the RNA secondary structure of the 812 EST sequences using mFold software, 338 new potential miRNAs were identified in 60 plant species, miRNAs are widespread. Some microRNAsmay highly conserve in the plant kingdom, and they may have the same ancestor in very early evolution. There is no nucleotide substitution in most miRNAs among many plant species. Some of the new identified potential miRNAs may be induced and regulated by environmental biotic and abiotic stresses. Some may be preferentially expressed in specific tissues, and are regulated by developmental switching. These findings suggest that EST analysis is a good alternative strategy for identifying new miRNA candidates, their targets, and other genes. A large number of miRNAs exist in different plant species and play important roles in plant developmental switching and plant responses to environmental abiotic and biotic stresses as well as signal transduction. Environmental stresses and developmental switching may be the signals for synthesis and regulation of miRNAs in plants. A model for miRNA induction and expression, and gene regulation by miRNA is hypothesized.  相似文献   

8.
The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellu-lar stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that theMAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stressresponses. To date, a total of 17 MAPK genes have been identified from the rice genome. Expression profiling,biochemical characterization and/or functional analysis were carried out with many members of the rice MAPKgene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogeneticrelationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standardannotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are re-viewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functionalspecificity among different rice MAP kinases, The future challenges are to functionally characterize each MAPK, toidentify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signalingpathway in rice crops for the improvement of agronomically important traits.  相似文献   

9.
10.
Abscission is the process by which plants discard organs in response to environmental cues/stressors, or as part of their normal development. Abscission has been studied throughout the history of the plant sciences and in numerous species. Although long studied at the anatomical and physiological levels, abscission has only been elucidated at the molecular and genetic levels within the last two decades, primarily with the use of the model plant Arabidopsis thaliana. This has led to the discovery of numerous genes involved at all steps of abscission, including key pathways involving receptor-like protein kinases (RLKs). This review covers the current knowledge of abscission research, highlighting the role of RLKs.  相似文献   

11.
植物MAP(mitogen-activated protein)激酶涉及植物的生长发育、对内源和外界环境刺激的反应.MAP激酶能将胞外感受器引起的刺激传递到胞内引起细胞的反应.拟南芥(Arabidopsis thaliana)作为模式植物,其全部的MAP激酶已经列出并进行了分类.根据已分类的拟南芥MAP激酶家族,已经分离出大量的MAP激酶基因,并将它们进行分类,发现它们大多能被包括病原、创伤、温度、干旱、盐、渗透、紫外线辐射、臭氧和活性氧等胁迫刺激激活.通过研究在不同环境胁迫下的功能和信号路径,发现植物MAP激酶信号传递系统是复杂且相互交错的.需要开发一些新的工具和策略去阐明MAPK信号传递路径,以及如何利用MAPK系统去改善农作物对生物和非生物胁迫的抗性.  相似文献   

12.
Signaling through MAP kinase networks in plants   总被引:13,自引:0,他引:13  
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.  相似文献   

13.
MAPK cascades in plant defense signaling.   总被引:21,自引:0,他引:21  
The Arabidopsis genome encodes approximately 20 different mitogen-activated protein kinases (MAPKs) that are likely to be involved in growth, development and responses to endogenous and environmental cues. Several plant MAPKs are activated by a variety of stress stimuli, including pathogen infection, wounding, temperature, drought, salinity, osmolarity, UV irradiation, ozone and reactive oxygen species. Recent gain-of-function studies show that two tobacco MAPKs induce the expression of defense genes and cause cell death. By contrast, loss-of-function studies of other MAPK pathways revealed negative regulation of disease resistance. This 'push-and-pull' regulation by different MAPK pathways might provide a more precise control of plant defense responses.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.  相似文献   

15.
16.
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.  相似文献   

17.
Mitogen-activated protein kinase (MAP kinase, MAPK) cascades play pivotal roles in signal transduction of extracellular stimuli, such as environmental stresses and growth regulators, in various organisms. Arabidopsis thaliana MAP kinases constitute a gene family, but stimulatory signals for each MAP kinase have not been elucidated. Here we show that environmental stresses such as low temperature, low humidity, hyper-osmolarity, touch and wounding induce rapid and transient activation of the Arabidopsis MAP kinases ATMPK4 and ATMPK6. Activation of ATMPK4 and ATMPK6 was associated with tyrosine phosphorylation but not with the amounts of mRNA or protein. Kinetics during activation differ between these two MAP kinases. These results suggest that ATMPK4 and ATMPK6 are involved in distinct signal transduction pathways responding to these environmental stresses.  相似文献   

18.
MAP kinase (MAPK) signal transduction cascades are conserved eukaryotic pathways that modulate stress responses and developmental processes. In a recent report we have identified novel Arabidopsis MAPKK/MAPK/Substrate signaling pathways using microarrays containing 2,158 unique Arabidopsis proteins. Subsequently, several WRKY and TGA targets phosphorylated by MAPKs were verified in planta. We have also reported that specific MAPKK/MAPK modules expressed in Nicotiana benthamiana induced a cell death phenotype related to the immune response. We have generated a MAPK phosphorylation network based on our protein microarray experimental data. Here we further analyze our network by integrating phosphorylation and gene expression information to identify biologically relevant signaling modules. We have identified 108 phosphorylation events that occur among 96 annotated genes with highly similar pairwise expression profiles. Our analysis brings a new perspective on MAPK signaling by revealing new relationships between components of signaling pathways.Key words: MAPK, protein microarray, network, cell death, co-expression, signaling  相似文献   

19.
植物MAP激酶级联途径研究进展   总被引:5,自引:0,他引:5  
MAP激酶(促分裂原活化蛋白激酶)级联途径可以将不同的细胞膜感受器与细胞应答联系起来,响应各种生物以及非生物胁迫,在植物激素信号以及细胞分裂和发育过程中发挥着重要的作用.为有效地传递各种特异信号,MAP激酶级联相互交叉形成复杂的信号传递网络.近年来,随着功能获得型突变体、功能缺失型突变体的获得以及其它一些新技术的应用,进一步阐明了MAP激酶级联途径在信号传导过程中的功能和作用.本文主要对植物MAPK级联途径在信号传导过程中交叉串通以及复杂性的最新研究结果进行综述.  相似文献   

20.
Huang Y  Li H  Gupta R  Morris PC  Luan S  Kieber JJ 《Plant physiology》2000,122(4):1301-1310
The modulation of mitogen-activated protein kinase (MAPK) activity regulates many intracellular signaling processes. In animal and yeast cells, MAP kinases are activated via phosphorylation by the dual-specificity kinase MEK (MAP kinase kinase). Several plant homologs of MEK and MAPK have been identified, but the biochemical events underlying the activation of plant MAPKs remain unknown. We describe the in vitro activation of an Arabidopsis homolog of MAP kinase, ATMPK4. ATMPK4 was phosphorylated in vitro by an Arabidopsis MEK homolog, AtMEK1. This phosphorylation occurred principally on threonine (Thr) residues and resulted in elevated ATMPK4 kinase activity. A second Arabidopsis MEK isoform, ATMAP2Kalpha, failed to phosphorylate ATMPK4 in vitro. Tyr dephosphorylation by the Arabidopsis Tyr-specific phosphatase AtPTP1 resulted in an almost complete loss of ATMPK4 activity. Immunoprecipitates of Arabidopsis extracts with anti-ATMPK4 antibodies displayed myelin basic protein kinase activity that was sensitive to treatment with AtPTP1. These results demonstrate that a plant MEK can phosphorylate and activate MAPK, and that Tyr phosphorylation is critical for the catalytic activity of MAPK in plants. Surprisingly, in contrast to the animal enzymes, AtMEK1 may not be a dual-specificity kinase but, rather, the required Tyr phosphorylation on ATMPK4 may result from autophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号