首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The purpose of this research was to encapsulate superoxide dismutase (SOD) and catalase (CAT) in biodegradable microspheres (MS) to obtain suitable sustained protein delivery. A modified water/oil/water double emulsion method was used for poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) PLA MS preparation co-encapsulating mannitol, trehalose, and PEG400 for protein stabilization. Size, morphology, porosity, mass loss, mass balance, in vitro release and in vitro activity were assessed by using BCA protein assay, scanning electron microscopy, BET surface area, and particle-sizing techniques. In vitro activity retention within MS was evaluated by nicotinammide adenine dinucleotide oxidation and H2O2 consumption assays. SOD encapsulation efficiency resulted in 30% to 34% for PLAMS and up to 51% for PLGA MS, whereas CAT encapsulation was 34% and 45% for PLGA and PLAMS, respectively. All MS were spherical with a smooth surface and low porosity. Particle mean diameters ranged from 10 to 17 μm. CAT release was prolonged, but the results were incomplete for both PLA and PLGA MS, whereas SOD was completely released from PLGA MS in a sustained manner after 2 months. CAT results were less stable and showed a stronger interaction than SOD with the polymers. Mass loss and mass balance correlated well with the release profiles. SOD and CAT in vitro activity was preserved in all the preparations, and SOD was better stabilized in PLGA MS. PLGA MS can be useful for SOD delivery in its native form and is promising as a new depot system.  相似文献   

2.
This study aimed to design methyprednisolone (MP)-loaded poly(d,l lactide-co-glycolide) (PLGA) microspheres (MS) intended for intra-articular administration. MP was encapsulated in four different types of PLGA by using an S/O/W technique. The effects of β-irradiation at the dose of 25 kGy were evaluated on the chemical and physicochemical properties of MS and the drug release profiles. The S/O/W technique with hydroxypropylmethylcellulose (HPMC) as surfactant allowed obtaining MS in the tolerability size (7–50 μm) for intra-articular administration. The MP encapsulation efficiency ranged 56–60%. HPMC traces were evidenced in the loaded and placebo MS by attenuated total reflectance Fourier transform infrared spectroscopy. MS made of the capped PLGA DL5050 2M (MS 2M) and uncapped PLGA DL5050 3A (MS 3A) prolonged the release of MP over a 2- to 3-month period with a triphasic (burst release–dormant period–second release pulse) and biphasic release pattern, respectively. The β-irradiation did not significantly alter the morphology, chemical, and physicochemical properties of MS. The only variation was evidenced in the drug release for MS 2M in term of shorting of the dormant period. The minimal variations in the properties of irradiated PLGA MS, which are in disagreement with literature data, may be attributed to a radioprotecting effect exerted by HPMC.  相似文献   

3.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

4.
Insulin microcrystals were encapsulated (microcrystal/PLGA) within poly(lactide-co-glycolide) (PLGA 50:50) by the multiple emulsification solvent evaporation technique and compared with insulin solution microspheres (solution/PLGA) in terms of their morphology, size distribution, drug content, encapsulation efficiency, and stability of insulin during release.  相似文献   

5.
The purpose of this research was to study the chemical reactivity of a somatostatin analogue octreotide acetate, formulated in microspheres with polymers of varying molecular weight and co-monomer ratio under in vitro testing conditions. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) microspheres were prepared by a solvent extraction/evaporation method. The microspheres were characterized for drug load, impurity content, and particle size. Further, the microspheres were subjected to in vitro release testing in acetate buffer (pH 4.0) and phosphate buffered saline (PBS) (pH 7.2). In acetate buffer, 3 microsphere batches composed of low molecular weight PLGA 50∶50, PLGA 85∶15, and PLA polymers (≤10 kDa) showed 100% release with minimal impurity formation (<10%). The high molecular weight PLGA 50∶50 microspheres (28 kDa) displayed only 70% cumulative release in acetate buffer with significant impurity formation (∼24%). In PBS (pH 7.4), on the other hand, only 50% release was observed with the same low molecular weight batches (PLGA 50∶50, PLGA 85∶15, and PLA) with higher percentages of hydrophobic impurity formation (ie, 40%, 26%, and 10%, respectively). In addition, in PBS, the high molecular weight PLGA 50∶50 microspheres showed only 20% drug release with ∼60% mean impurity content. The chemically modified peptide impurities inside microspheres were structurally confirmed through Fourier transform-mass spectrometry (FT-MS) and liquid chromatography/mass spectrometry (LC-MS/MS) analyses after extraction procedures. The adduct compounds were identified as covalently modified conjugates of octreotide with lactic and glycolic acid monomers within polymeric microspheres. The data suggest that due to steric hindrance factors, polymers with greater lactide content were less amenable to the formation of adduct impurities compared with PLGA 50∶50 copolymers.  相似文献   

6.
This paper describes the formulation of a biodegradable microparticulate drug delivery system containing clodronate, a bisphosphonate intended for the treatment of bone diseases. Microspheres were prepared with several poly(D,L-lactide-co-glycolide) (PLGA) copolymers of various molecular weights and molar compositions and 1 poly(D,L-lactide) (PDLLA) homopolymer by a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation procedure. Critical process parameters and formulation variables (ie, addition of stabilizing agents) were evaluated for their effect on drug encapsulation efficiency and clodronate release rate from microparticles Well-formed clodronate-loaded microspheres were obtained for all polymers by selecting suitable process parameters (inner water/oil volume ratio 1∶16, temperature-raising rate in the solvent evaporation step 1°C/min, 2% wt/vol NaCl in the external aqueous phase). Good yields were obtained in all batches of clodronate microspheres (above 60%); drug encapsulation efficiencies ranged between 49% and 75% depending on the polymer used. Clodronate release from all copolymer microspheres was completed in about 48 hours, while those from PDLLA microspheres required about 20 days. The change of microsphere composition by adding a surfactant such as Span 20 or a viscosing agent such as carboxymethylcellulose extended the long-term release up to 3 months. Clodronate was successfully entrapped in PLGA and PDLLA microspheres, and drug release could be modulated from 48 hours up to 3 months by suitable selection of polymer, composition, additives, and manufacturing conditions. Published: July 11, 2001.  相似文献   

7.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

8.
An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 microm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 microm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.  相似文献   

9.
Lysozyme was encapsulated within biodegradable poly(D, L-lactide-co-glycolide) microspheres by a double emulsion solvent evaporation method for studying its release mechanism associated with protein stability problems. When urea, a protein unfolding agent, was added into the incubation medium lysozyme release rate from the microspheres increased with the increase in urea concentration. The enhanced lysozyme release was attributed to the suppression of protein aggregation, to the facilitated diffusion of unfolded lysozyme by an efficient reptile motion of unfolded protein molecules through porous channels in microspheres, and to the largely decreased extent of nonspecific protein adsorption onto the enlarged surface area of degrading polymer microspheres in the presence of urea. Encapsulating lysozyme in an unfolded form within PLGA microspheres was attempted by using urea as an excipient. This new urea-based formulation exhibited a more sustained lysozyme release profile than the control formulation, and released lysozyme from the microspheres showed a much less amount of lysozyme dimer population while maintaining a correct conformation after refolding in the incubation medium. This study provides new insights for the formulation of protein encapsulated PLGA microspheres.  相似文献   

10.
In an effort to develop a new way of drug delivery, especially for polyenic antifungal molecules, we have incorporated amphotericin B (AmB) into biodegradable galactosylated poly (L-lactic acid) (L-PLA) and poly (L-lactic-co-glycolic acid) (PLGA) microspheres. These drug carriers were prepared by solvent evaporation using an oil/water (o/w) emulsion. The ratio of galactosyl spacers with different chain lengths was 1.74-2.78%. The maximal quantity of AmB encapsulated reported to 100 mg of the galactosylated microspheres was 7.14 mg for L-PLA (encapsulation rate 45% of mole) and 6.42 mg for PLGA derivatives (encapsulation rate 81% of mole). In our yeast model, drug release depended on three factors: (i) presence of galactosylated antennae, (ii) length of galactosyl antenna and (iii) nature of the polymer. More of the AmB trapped in PLGA microspheres was released than from PLA microspheres. These novel functionalised microspheres could be required for the delivering of therapeutic agents according to their recognition to specific cells.  相似文献   

11.
重组人粒细胞集落刺激因子缓释微球的研究   总被引:1,自引:0,他引:1  
目的:研究固体/油/水法制备重组人粒细胞集落刺激因子缓释微球,为开发其缓释剂型进行初步研究。方法:以聚乳酸.聚羟乙酸共聚物(PLGA)为载体材料:用固体/油/水法和水/油/水法制备载rhG-CSF缓释微球;考察粒径大小、外观、包封率等理化性质;用MieroBCA法考察微球的体外释药特性及影响因素;用SEC-HPLC和MTT比色法初步评价了微球制备工艺过程对rhG-CSF稳定性的影响。结果:两种方法制得的微球形态圆整、分散性良好,包封率均超过80%。固/油/水法制得的微球体外释放在2周内可超过90%,而水/油/水法制得的微球在相同的时间内仅释放30%。对于固/油/水法制备过程,SEC-HPLC法测定蛋白无明显聚集体出现,MTT法测定蛋白活性无明显损失。结论:实验证明了固/油/水法制备的PLGA微球可以实现2周以上的体外缓释。  相似文献   

12.
Orntide acetate, a novel luteinizing hormone-releasing hormone (LHRH) antagonist, was prepared and evaluated in vivo in 30-day and 120-day sustained delivery formulations using a rat animal model. Orntide poly(d,l- lactide-co-glycolide) (PLGA) and poly(d,l- lactide) (PLA) microspheres were prepared by a dispersion method and administered subcutaneously in a liquid vehicle to rats at 2.2 mg Orntide/kg of body weight (30-day forms) or 8.8 mg Orntide/kg (120-day forms). Serum levels of Orntide and testosterone were monitored by radioimmunoassays, and a dose-response study at 4 closes (3, 2.25, 1.5, and 1.75 mg Orntide/kg) was conducted to determine the effective dose of Orntide. Microspheres with diameters between 3.9 and 14 μ were prepared. The onset and duration of testosterone suppression varied for different microsphere formulations and were influenced both by polymer properties and by microsphere characteristics. Microspheres prepared with 50∶50 and 75∶25 copolymers effectively sustained peptide release for 14 to 28 days, whereas an 85∶15 copolymer and the PLA microspheres extended the pharmacological response for more than 120 days. Increase in drug load generally accelerated peptide release from the microspheres, resulting in higher initial serum levels of Orntide and shorter duration of the release: In general, apparent release was faster in vivo than under in vitro conditions. Orntide microspheres effectively suppressed testosterone in rats, providing rapid onset of release and extended periods of chemical castration. Testosterone suppression occurred immediately after microsphere administration without the initial elevation seen with LHRH superagonists.  相似文献   

13.
The preparation of microcapsules consisting of poly(d,l-lactide-co-glycolide) (PLGA) polymer shell and aqueous core is a clear challenge and hence has been rarely addressed in literature. Herein, aqueous core-PLGA shell microcapsules have been prepared by internal phase separation from acetone-water in oil emulsion. The resulting microcapsules exhibited mean particle size of 1.1?±?0.39 μm (PDI?=?0.35) with spherical surface morphology and internal poly-nuclear core morphology as indicated by scanning electron microscopy (SEM). The incorporation of water molecules into PLGA microcapsules was confirmed by differential scanning calorimetry (DSC). Aqueous core-PLGA shell microcapsules and the corresponding conventional PLGA microspheres were prepared and loaded with risedronate sodium as a model drug. Interestingly, aqueous core-PLGA shell microcapsules illustrated 2.5-fold increase in drug encapsulation in comparison to the classical PLGA microspheres (i.e., 31.6 vs. 12.7%), while exhibiting sustained release behavior following diffusion-controlled Higuchi model. The reported method could be extrapolated to encapsulate other water soluble drugs and hydrophilic macromolecules into PLGA microcapsules, which should overcome various drawbacks correlated with conventional PLGA microspheres in terms of drug loading and release.  相似文献   

14.
目的:研究担载碱性成纤维细胞生长因子(b-FGF)微球复合明胶支架的外形特征、孔径、孔隙率及体外释放动力学,以期构建具有缓释功能、高孔隙率的担载细胞因子的新型复合明胶支架。方法:本文利用冷冻相分离法和S/O/W法先将b-FGF水溶液包裹于PLGA微球中,然后埋置于明胶溶液中制备为多孔复合明胶支架。分别对微球的形态和复合明胶支架的基本形态、孔径、孔隙率进行表征,通过Elisa法测定b-FGF在复合明胶支架中的体外释放行为。结果:制备成形态良好的三维复合明胶支架,其孔隙率为82.90%±1.45%,孔径范围为150~300μm,复合明胶支架中b-FGF在体外缓慢释放20余天。结论:担载蛋白微球复合明胶支架不仅满足组织工程支架的要求,还能有效缓释细胞因子,为细胞和组织生长提供良好的微环境,为进一步应用于组织工程领域提供了可能。  相似文献   

15.
Poly(3-hydroxybutyrate)/chitosan/piroxicam or ketoprofen composite microparticles were prepared by the solid-in-water-in-oil emulsion-solvent evaporation technique with the aim of reducing the burst effect and controlling the drug release. Reservoir-type microparticles, composed of poly(3-hydroxybutyrate) microspheres embedded in a chitosan matrix were prepared. The size and morphological characteristics of the composite microparticles were evaluated in relation to the chitosan concentration and cross-linking with glutaraldehyde. Reservoir-type composite microparticles were obtained using 2.0% and 3.0% w/v chitosan solutions. A significant reduction in the burst effect and prolonged drug release were observed, particularly when higher chitosan and glutaraldehyde concentrations were used.  相似文献   

16.
The aim of this study was to prepare cyclosporin A-loaded liposome (CyA-Lip) as an oral delivery carrier, with their encapsulation into microspheres based on alginate or extracellular polysaccharide (EPS) p-m 10356. The main advantage of liposomes in the microspheres (LIMs) is to improve the restricted drug release property from liposomes and their stability in the stomach environment. Alginate microspheres containing CyA-Lip were prepared with a spray nozzle; CyA-Liploaded EPS microspheres were also prepared using a w/o emulsion method. The shape of the LIMs was spherical and uniform, and the particle size of the alginate-LIMs ranged from 5 to 10 μm, and that of the EPS-LIMs was about 100 μm. In a release test, release rate of CyA in simulated intestinal fluid (SIF) from the LIMs was significantly enhanced compared to that in simulated gastric fluid (SGF). In addition, the CyA release rates were slower from formulations containing the liposomes compared to the microspheres without the liposome. Therefore, alginate-and EPS-LIMs have the potential for the controlled release of CyA and as an oral delivery system.  相似文献   

17.
A new spinning oil film (SOF) solid-in-oil-in-oil emulsion process was developed to produce uniform-sized proteinloaded biodegradable microspheres. A thin SOF on a cylindrical rotor was used to shear droplets from a nozzle tip to control droplet size. The resulting microspheres with low polydispersity (6%) produced a low burst (6%–11%) release even at high loadings (13%–18% encapsulated solids, 8%–12% protein). The SOF process had a high yield and did not require the presence of water, which can cause protein denaturation, or surfactants, which may be unwanted in the final product. Amorphous protein and crystalline excipient solids were encapsulated into 3 different polymers, giving a homogenous drug distribution throughout the microspheres, and an essentially complete protein encapsulation efficiency (average=99%). In contrast, large burst release was observed for polydisperse microspheres produced by a conventional emulsification technique, particularly for microspheres smaller than 25 μm in diameter, which gave 93% burst at 15% loading. The uniform encapsulation of high loadings of proteins into microspheres with low polydispersity in an anhydrous process is of practical interest in the development of controlled-release protein therapeutics. Published: December 6, 2005  相似文献   

18.
This research compared the binding and release of recombinant human bone morphogenetic protein 2 (rhBMP-2) with a series of hydrophobic and hydrophilic poly-lactide-co-glycolide (PLGA) copolymers. Porous microspheres were produced via a double emulsion process. Binding and incorporation of protein were achieved by soaking microspheres in buffered protein solutions, filtering, and comparing protein concentration remaining to nonmicrosphere-containing samples. Protein release was determined by soaking bound microspheres in a physiological buffer and measuring protein concentration (by reversed-phase high-performance liquid chromatography) in solution over time. Normalized for specific surface area and paired by polymer molecular weight. microspheres made from hydrophilic 50∶50 or 75∶25 PLGA bound significantly more protein than microspheres made from the corresponding hydrophobic PLGA. Increased binding capacity correlated with higher polymer acid values. With certain polymers, rhBMP-2 adsorption was decreased or inhibited at high protein concentration, but protein loading could be enhanced by increasing the protein solution:PLGA (volume:mass) ratio or by repetitive soaking. Microspheres of various PLGAs released unbound protein in 3 days, whereas the subsequent bound protein release corresponded to mass loss. RhBMP-2 binding to PLGA was controlled by the acid value, protein concentration, and adsorption technique. The protein released in 2 phases: the first occurred over 3 days regardless of PLGA used and emanated from unbound, incorporated protein, while the second was controlled by mass loss and therefore was dependent on the polymer molecular weight. Overall, control of rhBMP-2 delivery is achievable by selection of PLGA microsphere carriers. Published: October, 7, 2001.  相似文献   

19.
This investigation was undertaken to evaluate practical feasibility of site specific pulmonary delivery of liposomal encapsulated Dapsone (DS) dry powder inhaler for prolonged drug retention in lungs as an effective alternative in prevention of Pneumocystis carinii pneumonia (PCP) associated with immunocompromised patients. DS encapsulated liposomes were prepared by thin film evaporation technique and resultant liposomal dispersion was passed through high pressure homogenizer. DS nano-liposomes (NLs) were separated by ultra centrifugation and characterized. NLs were dispersed in phosphate buffer saline (PBS) pH 7.4 containing different carriers like lactose, sucrose, and hydrolyzed gelatin, and 15% l-leucine as antiadherent. The resultant dispersion was spray dried and spray dried formulation were characterized to ascertain its performance. In vitro pulmonary deposition was assessed using Andersen Cascade Impactor as per USP. NLs were found to have average size of 137 ± 15 nm, 95.17 ± 3.43% drug entrapment, and zeta potential of 0.8314 ± 0.0827 mV. Hydrolyzed gelatin based formulation was found to have low density, good flowability, particle size of 7.9 ± 1.1 μm, maximum fine particle fraction (FPF) of 75.6 ± 1.6%, mean mass aerodynamic diameter (MMAD) 2.2 ± 0.1 μm, and geometric standard deviation (GSD) 2.3 ± 0.1. Developed formulations were found to have in vitro prolonged drug release up to 16 h, and obeys Higuchi's Controlled Release model. The investigation provides a practical approach for direct delivery of DS encapsulated in NLs for site specific controlled and prolonged release behavior at the site of action and hence, may play a promising role in prevention of PCP.  相似文献   

20.
In this study, the use of biodegradable polymers for microencapsulation of naltrexone using solvent evaporation technique is investigated. The use of naltrexone microspheres for the preparation of matrix devices is also studied. For this purpose, poly(L-lactide) (PLA) microspheres containing naltrexone prepared by solvent evaporation technique were compressed at temperatures above the Tg of the polymer. The effect of different process parameters, such as drug/polymer ratio and stirring rate during preparation of microspheres, on the morphology, size distribution, and in vitro drug release of microspheres was studied. As expected, stirring rate influenced particle size distribution of microspheres and hence drug release profiles. By increasing the stirring speed from 400 to 1200 rpm, the mean diameter of microspheres decreased from 251 μm to 104 μm. The drug release rate from smaller microspheres was faster than from larger microspheres. However, drug release from microspheres with low drug content (20% wt/wt) was not affected by the particle size of microspheres. Increasing the drug content of microspheres from 20% to 50% wt/wt led to significantly faster drug release from microspheres. It was also shown that drug release from matrix devices prepared by compression of naltrexone microspheres is much slower than that of microspheres. No burst release was observed with matrix devices. Applying higher compression force, when compressing microspheres to produce tablets, resulted in lower drug release from matrix devices. The results suggest that by regulating different variables, desired release profiles of naltrexone can be achieved using a PLA microparticulate system or matrix devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号