首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system poly(lactic-co-glycolic) acid/ piroxicam (PLGA/PX) was selected, as a model system, to evaluate the effectiveness of supercritical carbon dioxide (SC-CO(2)) extraction of the oily phase (ethyl acetate) from oil-in-water emulsions used in the production of polymer/drug microspheres for sustained drug release applications. The influence of process parameters like operating pressure and temperature, flow rate and contacting time between the emulsion and SC-CO(2) was studied with respect to the microsphere size, distribution and solvent residue. Different polymer concentrations in the oily phase were also tested in emulsions formulation to monitor their effects on droplets and microspheres size distribution at fixed mixing conditions. Spherical PLGA microspheres loaded with PX (10% w/w) with mean sizes ranging between 1 and 3 microm and very narrow size distributions were obtained due to the short supercritical processing time (30 min) that prevents the aggregation phenomena typically occurring during conventional solvent evaporation process. A solvent residue smaller than 40 ppm was also obtained at optimized operating conditions. DSC and SEM-EDX analyses confirmed that the produced microparticles are formed by a solid solution of PLGA and PX and that the drug is entrapped in an amorphous state into the polymeric matrix with an encapsulation efficiency in the range of 90-95%. Drug release rate studies showed very uniform drug concentration profiles, without any burst effect, confirming a good dispersion of the drug into the polymer particles.  相似文献   

2.
In an effort to develop a new way of drug delivery, especially for polyenic antifungal molecules, we have incorporated amphotericin B (AmB) into biodegradable galactosylated poly (L-lactic acid) (L-PLA) and poly (L-lactic-co-glycolic acid) (PLGA) microspheres. These drug carriers were prepared by solvent evaporation using an oil/water (o/w) emulsion. The ratio of galactosyl spacers with different chain lengths was 1.74-2.78%. The maximal quantity of AmB encapsulated reported to 100 mg of the galactosylated microspheres was 7.14 mg for L-PLA (encapsulation rate 45% of mole) and 6.42 mg for PLGA derivatives (encapsulation rate 81% of mole). In our yeast model, drug release depended on three factors: (i) presence of galactosylated antennae, (ii) length of galactosyl antenna and (iii) nature of the polymer. More of the AmB trapped in PLGA microspheres was released than from PLA microspheres. These novel functionalised microspheres could be required for the delivering of therapeutic agents according to their recognition to specific cells.  相似文献   

3.
Insulin microcrystals were encapsulated (microcrystal/PLGA) within poly(lactide-co-glycolide) (PLGA 50:50) by the multiple emulsification solvent evaporation technique and compared with insulin solution microspheres (solution/PLGA) in terms of their morphology, size distribution, drug content, encapsulation efficiency, and stability of insulin during release.  相似文献   

4.
The purpose of this research was to assess the physicochemical properties of a controlled release formulation of recombinant human growth hormone (rHGH) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) composite microspheres. rHGH was loaded in poly(acryloyl hydroxyethyl) starch (acHES) microparticles, and then the protein-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction/evaporation method. rHGH-loaded PLGA microspheres were also prepared using mannitol without the starch hydrogel microparticle microspheres for comparison. The detection of secondary structure changes in protein was investigated by using a Fourier Transfer Infrared (FTIR) technique. The composite microspheres were spherical in shape (44.6±2.47 μm), and the PLGA-mannitol microspheres were 39.7±2.50 μm. Drug-loading efficiency varied from 93.2% to 104%. The composite microspheres showed higher overall drug release than the PLGA/mannitol microspheres. FTIR analyses indicated good stability and structural integrity of HGH localized in the microspheres. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

5.
The aim of this study was to formulate and characterize a microparticulate system of progestin-only contraceptive. Another objective was to evaluate the effect of gamma radio-sterilization on in vitro and in vivo drug release characteristics. Levonorgestrel (LNG) microspheres were fabricated using poly(lactide-co-glycolide) (PLGA) by a novel solvent evaporation technique. The formulation was optimized for drug/polymer ratio, emulsifier concentration, and process variables like speed of agitation and evaporation method. The drug to polymer ratio of 1:5 gave the optimum encapsulation efficiency. Speed of agitation influenced the spherical shape of the microparticles, lower speeds yielding less spherical particles. The speed did not have a significant influence on the drug payloads. A combination of stabilizers viz. methyl cellulose and poly vinyl alcohol with in-water solvent evaporation technique yielded microparticles without any free drug crystals on the surface. This aspect significantly eliminated the in vitro dissolution “burst effect”. The residual solvent content was well within the regulatory limits. The microparticles passed the test for sterility and absence of pyrogens. In vitro dissolution conducted on the product before and after gamma radiation sterilization at 2.5 Mrad indicated no significant difference in the drug release patterns. The drug release followed zero-order kinetics in both static and agitation conditions of dissolution testing. The in vivo studies conducted in rabbits exhibited LNG release up to 1 month duration with drug levels maintained within the effective therapeutic window.  相似文献   

6.
The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting.  相似文献   

7.
Psoriasis is a chronic, autoimmune skin disease affecting approximately 2% of the world's population. Clobetasol propionate which is a superpotent topical corticosteroid is widely used for topical treatment of psoriasis. Conventional dosage forms like creams and ointments are commonly prefered for the therapy. The purpose of this study was to develop a new topical delivery system in order to provide the prolonged release of clobetasol propionate and to reduce systemic absorption and side effects of the drug. Clobetasol propionate loaded-poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by oil-in-water emulsion–solvent evaporation technique. Particle size analysis, morphological characterization, DSC and XRD analyses and in vitro drug release studies were performed on the microparticle formulations. Emulgel formulations were prepared as an alternative for topical delivery of clobetasol propionate. In vitro drug release studies were carried out from the emulgel formulations containing pure drug and drug-loaded microspheres. In addition, the same studies were performed to determine the drug release from the commercial cream product of clobetasol propionate. The release of clobetasol propionate from the emulgel formulations was significantly higher than the commercial product. In addition, the encapsulation of clobetasol propionate in the PLGA microspheres significantly delayed the drug release from the emulgel formulation. As a result, the decrease in the side effects of clobetasol propionate by the formulation containing PLGA microspheres is expected.  相似文献   

8.
In this study the w/o/w extraction-evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The microspheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical microspheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the microsphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.  相似文献   

9.
Lysozyme was encapsulated within biodegradable poly(D, L-lactide-co-glycolide) microspheres by a double emulsion solvent evaporation method for studying its release mechanism associated with protein stability problems. When urea, a protein unfolding agent, was added into the incubation medium lysozyme release rate from the microspheres increased with the increase in urea concentration. The enhanced lysozyme release was attributed to the suppression of protein aggregation, to the facilitated diffusion of unfolded lysozyme by an efficient reptile motion of unfolded protein molecules through porous channels in microspheres, and to the largely decreased extent of nonspecific protein adsorption onto the enlarged surface area of degrading polymer microspheres in the presence of urea. Encapsulating lysozyme in an unfolded form within PLGA microspheres was attempted by using urea as an excipient. This new urea-based formulation exhibited a more sustained lysozyme release profile than the control formulation, and released lysozyme from the microspheres showed a much less amount of lysozyme dimer population while maintaining a correct conformation after refolding in the incubation medium. This study provides new insights for the formulation of protein encapsulated PLGA microspheres.  相似文献   

10.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

11.
An objective of the present investigation was to prepare and evaluate Eudragit-coated pectin microspheres for colon targeting of 5-fluorouracil (FU). Pectin microspheres were prepared by emulsion dehydration method using different ratios of FU and pectin (1:3 to 1:6), stirring speeds (500–2000 rpm) and emulsifier concentrations (0.75%–1.5% wt/vol). The yield of preparation and the encapsulation efficiencies were high for all pectin microspheres. Microspheres prepared by using drug:polymer ratio 1:4, stirring speed 1000 rpm, and 1.25% wt/vol concentration of emulsifying agent were selected as an optimized formulation. Eudragit-coating of pectin microspheres was performed by oil-in-oil solvent evaporation method using coat: core ratio (5:1). Pectin microspheres and Eudragit-coated pectin microspheres were evaluated for surface morphology, particle size and size distribution, swellability, percentage drug entrapment, and in vitro drug release in simulated gastrointestinal fluids (SGF). The in vitro drug release study of optimized formulation was also performed in simulated colonic fluid in the presence of 2% rat cecal content. Organ distribution study in albino rats was performed to establish the targeting potential of optimized formulation in the colon. The release profile of FU from Eudragit-coated pectin microspheres was pH dependent. In acidic medium, the release rate was much slower; however, the drug was released quickly at pH 7.4. It is concluded from the present investigation that Eudragit-coated pectin microspheres are promising controlled release carriers for colon-targeted delivery of FU. Published: February 16, 2007  相似文献   

12.
Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for encapsulation was demonstrated by the inclusion of a solution of Texas Red fluorescent dye. Lysine epsilon-amino groups on the surface of the microspheres were deprotected by acid hydrolysis or lithium/liquid ammonia reduction. Acid hydrolysis damaged the surface of the microspheres as assessed by scanning electron microscopy, whereas deprotection by lithium/ammonia produced less damage and allowed the retention of encapsulated dye solution. The surface lysine groups made available on the surface of the microspheres could be used to covalently link a variety of biologically active molecules to alter their in vivo properties and allow targeting to specific cell types.  相似文献   

13.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

14.
In this study the w/o/w extraction–evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The micro-spheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical micro-spheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the mi-crosphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.  相似文献   

15.
The effective controlled release of small hydrophilic drugs from poly(d ,l ‐lactic‐co‐glycolic acid) (PLGA) microspheres has remained a challenge, largely due to the difficulty of loading a large amount of the drug inside the microspheres, owing to the hydrophilicity of the drugs. This study provides a new strategy for increasing encapsulation of small hydrophilic drugs inside PLGA microspheres by utilizing noncovalent, physical adsorption between hydrophilic drugs and emulsifying polymers of poly(vinyl alcohol) and pluronic. An order of magnitude increase in drug loading efficiency from 2.7 to 18.6% for dopamine, a model small hydrophilic drug, was achieved. The large amount of dopamine‐loaded PLGA formulation herein could be useful for the treatment of Parkinson's disease. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:215–223, 2014  相似文献   

16.
In this study, the use of biodegradable polymers for microencapsulation of naltrexone using solvent evaporation technique is investigated. The use of naltrexone microspheres for the preparation of matrix devices is also studied. For this purpose, poly(L-lactide) (PLA) microspheres containing naltrexone prepared by solvent evaporation technique were compressed at temperatures above the Tg of the polymer. The effect of different process parameters, such as drug/polymer ratio and stirring rate during preparation of microspheres, on the morphology, size distribution, and in vitro drug release of microspheres was studied. As expected, stirring rate influenced particle size distribution of microspheres and hence drug release profiles. By increasing the stirring speed from 400 to 1200 rpm, the mean diameter of microspheres decreased from 251 μm to 104 μm. The drug release rate from smaller microspheres was faster than from larger microspheres. However, drug release from microspheres with low drug content (20% wt/wt) was not affected by the particle size of microspheres. Increasing the drug content of microspheres from 20% to 50% wt/wt led to significantly faster drug release from microspheres. It was also shown that drug release from matrix devices prepared by compression of naltrexone microspheres is much slower than that of microspheres. No burst release was observed with matrix devices. Applying higher compression force, when compressing microspheres to produce tablets, resulted in lower drug release from matrix devices. The results suggest that by regulating different variables, desired release profiles of naltrexone can be achieved using a PLA microparticulate system or matrix devices.  相似文献   

17.
18.
The purpose of this study is to formulate in situ implants containing doxycycline hydrochloride and/or secnidazole that could be used in the treatment of periodontitis by direct periodontal intrapocket administration. Biodegradable polymers [poly (lactide) (PLA) and poly (lactide-co-glycolide) (PLGA)], each polymer in two concentrations 25%w/w, 35%w/w were used to formulate the in situ implants. The rheological behavior, in vitro drug release and the antimicrobial activity of the prepared implants were evaluated. Increasing the concentration of each polymer increases the viscosity and decreases the percent of the drugs released after 24 h. PLA implants showed a slower drugs release rate than PLGA implants in which the implants composed of 25% PLGA showed the fastest drugs release. The in vitro drug release and antimicrobial activity results were compared with results of Atridox. Results revealed that the pharmaceutical formulation based on 25% PLGA containing secnidazole and doxycycline hydrochloride has promising activity in treating periodontitis in comparison with Atridox.  相似文献   

19.
The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.  相似文献   

20.
In this study, ethylcellulose (EC)-based microsphere formulations were prepared without and with triethyl citrate (TEC) content of 10% and 30% by water-in-oil emulsion-solvent evaporation technique. Diltiazem hydrochloride (DH) was chosen as a hydrophilic model drug and used at different drug/polymer ratios in the microspheres. The aim of the work was to evaluate the influence of plasticizer ratio on the drug release rate and physicochemical characteristics of EC-based matrix-type microspheres. The resulting microspheres were evaluated for encapsulation efficiency, particle size and size distribution, surface morphology, total pore volume, thermal characteristics, drug release rates, and release mechanism. Results indicated that the physicochemical properties of microspheres were strongly affected by the drug/polymer ratio investigated and the concentration of TEC used in the production technique. The surface morphology and pore volume of microspheres significantly varied based on the plasticizer content in the formulation. DH release rate from EC-based matrix-type microspheres can be controlled by varying the DH to polymer and plasticizer ratios. Glass transition temperature values tended to decrease in conjunction with increasing amounts of TEC. Consequently, the various characteristics of the EC microspheres could be modified based on the plasticized ratio of TEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号