首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A binary competition experiment between carrot (Daucus carota L.) and Chenopodium album L. was conducted in a greenhouse at seven population densities and eight nutrient concentrations to investigate the effects of a nutrient gradient on plant competition in both monocultures and mixtures. The patterns of carrot biomass allocation (measured as root : shoot ratio) in monocultures and mixtures with C. album were affected by both nutrient availability and population density. Chenopodium album had a broader response to nutrient concentrations than carrot. The maximum yield of carrot in both monocultures and mixtures occurred at fourfold the standard concentration of nutrients, while C. album in both monocultures and mixtures had the maximum yield at 16-fold the standard nutrient concentration. The yield–density relationship of carrot tended to be increasing or asymptotic at lower nutrient concentrations but parabolic at higher concentrations, whereas that of C. album was little affected by nutrient availability. Nutrient availability had a profound influence on the competitive relationships between the two species: at both low and high nutrient concentrations, C. album tended to be more competitive than carrot, while at intermediate levels of nutrients, carrot was more competitive than C. album. Our results suggest that in relation to competitive performance, the weed has a greater ability to adapt itself to varying environments than does the crop. Additionally, the relative merits of the quantitative measures of competitive ability are briefly discussed.  相似文献   

2.

Background and aims

Water availability is often one of the most limiting factors for plants. Climate change predictions for many areas suggest an intensification of water limitation. The ability of a plant to modify its root characteristics can be an important mechanism for preventing drought stress.

Methods

We studied the drought response of seedlings of 10 woody species and compared the biomass allocation, vertical root distribution across different root diameters, and the key traits of very fine roots (root diameter <0.5 mm) under two water regimes (no water limitation and severe drought).

Results

Under drought conditions, the very fine roots had a higher specific root length (SRL, root length: biomass ratio), smaller root diameter and higher root tissue mass density, as well as a lower nitrogen concentration. A higher value of the mean root plasticity index was related to higher drought resistance. A quantitative literature review showed that there was a wide variation in the effect of the drought on SRL, thus there was not a clear effect of drought on SRL.

Conclusions

Certain species have the necessary root traits and plasticity to survive drought. We have identified plasticity in root characteristics as a whole-plant trait which plays a significant role in separating out species into those which are vulnerable and those which are resistant to drought.  相似文献   

3.
The competitive interactions between woody seedlings and herbaceous vegetation have received increasing interest in recent years. However, little is known about the relative contributions and underlying mechanisms of above- and below-ground competition between species. We used a novel experimental approach to assess the responses of Fraxinus excelsior seedlings to different combinations of root and shoot competition imposed by the grass Dactylis glomerata under greenhouse conditions. Seedling growth was significantly reduced by competition for soil resources, but neither biomass nor height were significantly affected by shoot competition for light. Competitive response indices based on biomass confirmed that below-ground competition was more important than above-ground competition, and indicated that root and shoot competition did not interact to influence plant growth. Fraxinus biomass allocation and seedling traits were almost all significantly affected by root competition; these responses varied depending on the trait examined. In contrast, morphological responses to shoot competition were limited. In the absence of root competition, seedlings showed a significant increase in the biomass allocated to leaves and a greater leaf area ratio in response to shoot competition. Our findings suggest that morphological modifications help to mitigate the negative effects of competition, but the expression of plasticity may be suboptimal due to resource constraints. The present study also highlights the importance of appropriate experimental controls and analysis to avoid confounding effects of experimental design and ontogeny on the interpretation of competitive responses.  相似文献   

4.
Clonal plants from poor habitats benefit less from morphologically plastic responses to heterogeneity than plants from more productive sites. In addition, physiological integration has been suggested to either increase or decrease the foraging efficiency of clonal plants. We tested the capacity for biomass production and morphological response in two closely related, rhizomatous species from habitats that differ in resource availability, Carex arenaria (from poor sand dunes) and C. disticha (from nutrient-richer, moister habitats). We expected lower total biomass production and reduced morphological plasticity in C. arenaria, and that both species would produce more ramets in high nutrient patches, either in response to signals transported through physiological integration, or by locally determined responses to nutrient availability. To investigate mineral nutrient heterogeneity, plants were grown in boxes divided into two compartments with homogeneous or heterogeneous supply of high (H) or low (L) nutrient levels, resulting in four treatments, H-H, H-L, L-H and L-L. Both C. arenaria and C. disticha produced similar biomass in high nutrient treatments. C. disticha responded to high nutrients by increased biomass production and branching of the young parts and by altering root:shoot ratio and rhizome lengths, while C. arenaria showed localised responses to high nutrients in terms of local biomass and branch production in high nutrient patches. The results demonstrated that although it has a conservative morphology, C. arenaria responded to nutrient heterogeneity through morphological plasticity. An analysis of costs and benefits of integration on biomass production showed that young ramets of both species benefited significantly from physiological integration, but no corresponding costs were found. This suggests that plants from resource-poor but dynamic habitats like sand dunes respond morphologically to high nutrient patches. The two species responded to nutrient heterogeneity in different traits, and this is discussed in terms of local and distant signalling of plant status.  相似文献   

5.
植物根系养分捕获塑性与根竞争   总被引:7,自引:0,他引:7       下载免费PDF全文
王鹏  牟溥  李云斌 《植物生态学报》2012,36(11):1184-1196
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。  相似文献   

6.
We analyzed data on root weight ratio from a range of experimental studies documenting plant allocation changes in response to altered nitrogen availability. Our goal was to determine the degree to which plasticity in allocation between roots and shoots exists and to search for patterns in such plasticity among species. Our survey included 77 studies representing 206 cases and 129 species. As expected, we found that root weight ratio decreased with increased nitrogen availability in the majority of cases examined, and this response was most consistent when plants were grown individually or in intraspecific competition (versus interspecific competition). Surprisingly, however, we found no evidence to support existing hypotheses that fast-growing species adapted to high soil fertilities exhibit the highest levels of morphological plasticity, or that plasticity is positively associated with competitive ability. Rather, we found that average amounts of plasticity in root weight ratio in response to nitrogen availability were similar among species grouped by maximum relative growth rate and habitat fertility. Similar results were obtained for species categorized by life form, life history or root weight ratio itself, and plasticity in root weight ratio also had no consistent relationship with competitive ability. Numerous difficulties are associated with the attempt to search for pattern using independent studies, however our results lead to the conclusion that strong patterns in plasticity of root weight ratio in response to nitrogen availability among species do not exist. We discuss two reasons for this: (1) the costs of plasticity relative to its benefits are lower than previously predicted and (2) plasticity in traits other than root weight ratio is more important to plant foraging ability.  相似文献   

7.
Changes in plant biomass allocation in response to varying resource availabilities may result from ontogenetic drift caused by allometric growth (i.e., apparent plasticity), a true adjustment of ontogenetic trajectories (true plasticity) or both (complex plasticity). Given that the root allocation of annual species usually decreases during the growth, the developmentally explicit model predicts that annual herbs will exhibit true plasticity in root allocation under above-ground resource limitation and apparent plasticity for moderate stress of below-ground resource. For perennial species, the root allocation of which increases during growth, the reverse patterns would be expected. In this study, we tested the developmentally explicit model with a perennial weed, Alternanthera philoxeroides (Mart.) Griseb. We report its adaptive changes and ontogenetic drift of root allocation in response to different resource levels (i.e., light, water and nutrient availability) by comparing root allocation on both an age and a size basis. The root allocation of A. philoxeroides increased with the size (i.e., ontogenetic drift) during the growth, and exhibited significant changes in response to different resource availabilities. Furthermore, the root allocation in response to water or nutrient availability exhibited typical complex plasticity, while the light stress only slowed down the growth, with the ontogenetic trajectory unchanged (apparent plasticity). The contrasting responses to above-ground and below-ground stresses were consistent with the prediction of the developmentally explicit model.  相似文献   

8.
Numerous studies have explored the effect of environmental conditions on a number of plant physiological and structural traits, such as photosynthetic rate, shoot versus root biomass allocation, and leaf and root morphology. In contrast, there have been a few investigations of how those conditions may influence root respiration, even though this flux can represent a major component of carbon (C) pathway in plants. In this study, we examined the response of mass-specific root respiration (μmol CO2 g−1 s−1), shoot and root biomass, and leaf photosynthesis to clipping and variable soil moisture in two C3 (Festuca idahoensis Elmer., Poa pratensis L.) and two C4 (Andropogon greenwayi Napper, and Sporobolus kentrophyllus K. Schum.) grass species. The C3 and C4 grasses were collected in Yellowstone National Park, USA and the Serengeti ecosystem, Africa, respectively, where they evolved under temporally variable soil moisture conditions and were exposed to frequent, often intense grazing. We also measured the influence of clipping and soil moisture on specific leaf area (SLA), a trait associated with moisture conservation, and specific root length (SRL), a trait associated with efficiency per unit mass of soil resource uptake. Clipping did not influence any plant trait, with the exception that it reduced the root to shoot ratio (R:S) and increased SRL in P. pratensis. In contrast to the null effect of clipping on specific root respiration, reduced soil moisture lowered specific root respiration in all four species. In addition, species differed in how leaf and root structural traits responded to lower available soil moisture. P. pratensis and A. greenwayi increased SLA, by 23% and 33%, respectively, and did not alter SRL. Conversely, S. kentrophyllus increased SRL by 42% and did not alter SLA. F. idahoensis responded to lower available soil moisture by increasing both SLA and SRL by 38% and 33%, respectively. These responses were species-specific strategies that did not coincide with photosynthetic pathway (C3/C4) or growth form. Thus, mass-specific root respiration responded uniformly among these four grass species to clipping (no effect) and increased soil moisture stress (decline), whereas the responses of other traits (i.e., R:S ratio, SLA, SRL) to the treatments, especially moisture availability, were species-specific. Consequently, the effects of either clipping or variation in soil moisture on the C budget of these four different grasses species were driven primarily by the plasticity of R:S ratios and the structural leaf and root traits of individual species, rather than variation in the response of mass-specific root respiration.  相似文献   

9.
We examined how water and nitrogen addition and water–nitrogen interactions affect root and shoot competition intensity and competition–productivity relationships in a native rough fescue grassland in central Alberta, Canada. Water and nitrogen were added in a factorial design to plots and root exclusion tubes and netting were used to isolate root and shoot competition on two focal species (Artemisia frigida and Chenopodium leptophyllum). Both water and nitrogen were limiting to plant growth, and focal plant survival rates increased with nitrogen but not water addition. Relative allocation to root biomass increased with water addition. Competition was almost entirely belowground, with focal plants larger when released from root but not shoot competition. There were no significant relationships between productivity and root, shoot, or total competition intensity, likely because in this system shoot biomass was too low to cause strong shoot competition and root biomass was above the levels at which root competition saturates. Water addition had few effects on the intensity of root competition suggesting that root competition intensity is invariant along soil moisture gradients. Contrary to general expectation, the strength of root competition increased with nitrogen addition demonstrating that the relationship between root competition intensity and nitrogen is more complex than a simple monotonic decline as nitrogen increases. Finally, there were few interactions between nitrogen and water affecting competition. Together these results indicate that the mechanisms of competition for water and nitrogen likely differ.  相似文献   

10.
We compared the phenotypic plasticity of two greenhouse-grown species (Corispermum macrocarpum and Salsola collina) occupying different positions in a successional sequence in Horqin Sandy Land, by treating with different population density and the availability of soil nutrients and water. The same species can exhibit different patterns of plasticity in response to different environmental factors. In the soil nutrient treatments, the plasticity pattern of S. collina could be described as “master-of-some”. However, in the soil-water and population-density treatments, it showed no significant difference from C. macrocarpum in the reaction norm for plasticity. It was similar to a “jack-of-all-trades” plasticity pattern. Contrary to the previous conclusion that late successional species had higher reproductive allocation than early successional species, in this successional sequence, the late species had lower reproductive allocation in all treatments. Reproductive allocation of both species increased with the increase in water availability and also increased with a decrease in nutrient levels. However, density had no effect on reproductive allocation. Although the root:shoot ratio increased with decreasing water availability, there were no differences in the plasticity pattern for this trait in both species. Root:shoot ratio was, however, not significantly affected by nutrient availability and density. In a word, the plasticity patterns of invaders are adapted to the analyses of succession.  相似文献   

11.
Proliferation of lianas in canopy gaps can restrict tree regeneration in tropical forests through competition. Liana effects may differ between tree species, depending on tree requirements for above- and below-ground resources. We conducted an experiment in a shade house over 12 months to test the effect of light (7 and 27% external irradiance) on the competitive interactions between seedlings of one liana species and three tree species and the contribution of both above- and below-ground competition. Seedlings of the liana Acacia kamerunensis were grown with tree seedlings differing in shade tolerance: Nauclea diderrichii (Pioneer), Khaya anthotheca (Non-Pioneer Light Demander) and Garcinia afzelii (Non-Pioneer Shade Bearer). Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Both root and root–shoot competition significantly reduced relative growth rates in all three tree species. After one year, root–shoot competition reduced growth in biomass to 58% of those (all species) grown in no competition. The root competition treatment had a more important contribution in the effect of the liana on tree growth. Tree seedlings did not respond to competition with the liana by altering their patterns of biomass allocation. Although irradiance had a great effect on tree growth and allocation of biomass, the interaction between competition treatments and irradiance was not significant. Nauclea diderrichii, the tree species which responded most to the effects of competition, showed signs of being pot-bound, the stress of which may have augmented the competition effects. The understanding of the interaction of above- and below-ground competition between lianas and trees and its moderation by the light environment is important for a proper appreciation of the influence of lianas on tropical forest regeneration.  相似文献   

12.
We investigated how shoot and root allocation in plants responds to increasing levels of competitive stress at different levels of soil fertility. In addition, we analyzed whether different responses were due to adaptive plasticity or should be attributed to ontogenetic drift. Plantago lanceolata plants were grown during 18 weeks at five plant densities and four nutrient supply levels in pots in the greenhouse. Thereafter root and shoot biomass was measured. There were clear negative effects of increasing plant densities on plant weights revealing strong intraspecific competition. At the lower N-treatments, the proportional allocation to root mass increased with increasing competitive stress, indicating the important role of belowground competition. At the higher N-supply rate, the relationship between competitive stress and shoot to root ratio was neutral. These responses could not be attributed to ontogenetic drift, but could only be explained by assuming adaptive plasticity. It was concluded that at lower N-supplies belowground competition dominates and leads to increased allocation to roots, while at the higher N-supply competition for soil resources and light had balanced impacts on shoot and root allocation. An alternative hypothesis explaining the observed pattern is that light competition has far less pronounced impacts on root–shoot allocation than nutrient deprival.  相似文献   

13.
The objective of this study is to determine the effects of substrate moisture and oxygen availability on growth traits of Salix gracilistyla Miquel, which colonizes gravel bars along rivers, the shoot growth schedule, biomass production, and resource allocation were examined under greenhouse conditions. We used four treatments representing a range of substrate moisture and oxygen availability: drought (D), flooding with standing water (FS), flooding with running water (FR), and control without drought or flooding (C). Cuttings in D stopped flushing and had low biomass production, reduced total leaf mass, and small leaves. Under anaerobic conditions, cuttings in FS stopped flushing and had low biomass production, small root biomass, low biomass allocation to roots, shallow roots, high biomass allocation to hypertrophied lenticels, and a few small, thick leaves. Under aerobic conditions, cuttings in FR showed continuous branch elongation and flushing, large biomass production, and large leaf biomass, similar to cuttings in C, in addition to low allocation to hypertrophied lenticels and many large leaves. The growth of cuttings was not inhibited by flooding of the roots throughout the experiment unless the conditions were anaerobic. Thus, cuttings respond to water stress under low moisture conditions by reducing the transpiration area and respond to flooding under low oxygen conditions by high allocation to hypertrophied lenticels and reduced transpiration area. Plasticity in the shoot growth schedule, biomass production, and resource allocation according to moisture conditions and the ability to develop hypertrophied lenticels upon flooding allow S. gracilistyla to colonize sites in which both desiccation and flooding occur.  相似文献   

14.
Green cabbage (Brassica campestris, leafy variety) and turnip (Brassica campestris var. rapifera, rooty variety) were grown in both monocultures and mixtures at three nutrient levels to investigate their responses to nutrient availability with respect to biomass allocation, morphological plasticity and competitive ability. Their allocation parameters and leaf morphological traits were affected by both nutrient availability and developmental stage. Both of the varieties had a smaller biomass allocation to leaf blades, but a greater allocation to petioles at high nutrient levels. Root:shoot ratio (RSR) of green cabbage decreased with increasing nutrient availability, whereas that of turnip increased. Turnip had a smaller leaf blade weight ratio (LBWR) than cabbage, being compensated for by larger leaf area ratio (LAR) and specific leaf area (SLA). Leaf area ratio and SLA of both the varieties increased with increasing nutrient availability as did their mean dry weights. The mean dry weight of turnip was slightly greater than that of green cabbage in their respective monocultures, while that of green cabbage was greater than that of turnip in their 1:1 mixture. Therefore, green cabbage, having inherently greater biomass allocation to leaves, was generally more competitive than turnip with more biomass allocation to roots, especially at higher nutrient levels. However, within a variety, morphological plasticity (variation in LAR and SLA) was more important than the plasticity in biomass allocation (e.g. variation in RSR and LBWR) in determining competitive ability. The implication of our results is that competition models based on biomass allocation pattern alone may fail to predict competitive outcomes and that such models should also take morphological plasticity into full account.  相似文献   

15.
落叶松人工林细根动态与土壤资源有效性关系研究   总被引:39,自引:4,他引:35       下载免费PDF全文
树木细根在森林生态系统C和养分循环中具有重要的作用。由于温带土壤资源有效性具有明显的季节变化, 导致细根生物量、根长密度 (Rootlengthdensity, RLD) 和比根长 (Specificrootlength, SRL) 的季节性变化。以 17年生落叶松 (Larixgmelini) 人工林为研究对象, 采用根钻法从 5月到 10月连续取样, 研究了不同土层细根 (直径≤ 2mm) 生物量、RLD和SRL的季节动态, 以及这些根系指标动态与土壤水分、温度和N有效性的关系。结果表明 :1) 落叶松细根年平均生物量 (活根 +死根 ) 为 189.1g·m-2 ·a-1, 其中 5 0 %分布在表层 (0~ 10cm), 33%分布在亚表层 (11~ 2 0cm), 17%分布在底层 (2 1~ 30cm) 。活根和死根生物量在 5~ 7月以及 9月较高, 8月和 10月较低。从春季 (5月 ) 到秋季 (10月 ), 随着活细根生物量的减少, 死细根生物量增加 ;2 ) 土壤表层 (0~ 10cm) 具有较高的RLD和SRL, 而底层 (2 1~ 30cm) 最低。春季 (5月 ) 总RLD和SRL最高, 分别为 10 6 2 1.4 5m·m-3 和 14.83m·g-1, 到秋季 (9月 ) 树木生长结束后达到最低值, 分别为 2 198.2 0m·m-3 和 3.77m·g-1;3) 细根生物量、RLD和SRL与土壤水分、温度和有效N存在不同程度的相关性。从单因子分析来看, 土壤水分和有效N对细根的影响明显大于温度, 对活根的影响大于死根。由于土壤资源有效性的季节变化, 使得C的地下分配格局发生改变。各土层细根与有效性资源之间的相关性反映了细根功能季节性差异。细根 (生物量、RLD和SRL) 的季节动态 (5 8%~ 73%的变异 ) 主要由土壤资源有效性的季节变化引起。  相似文献   

16.
Aim A consistent set of root characteristics for herbaceous plants growing in water‐limited environments has been developed based on compilations of global root databases, but an overall analysis of why these characteristics occur is still missing. The central question in this study is whether an ecohydrological model which assumes that rooting strategies reflect maximization of transpiration can predict the variations in rooting strategies of plants in dry environments. Location Arid ecosystems across the globe. Methods A model was used to explore interactions between plant biomass, root–shoot allocation, root distribution, rainfall, soil type and water use by plants. Results Model analyses showed that the predicted shifts in rooting depth and root–shoot allocation due to changes in rainfall, soil type and plant biomass were quite similar to observed shifts. The model predicted that soil type, annual rainfall and plant biomass each had strong effects on the rooting strategies that optimize transpiration, but also that these factors have strong interactive effects. The process by which plants compete for water availability (soil evaporation or drainage) especially affected the depth distribution of roots in the soil, whereas the availability of rainfall mainly affected the optimal root–shoot allocation strategy. Main conclusions The empirically observed key patterns in rooting characteristics of herbaceous plant species in arid environments could be explained in this theoretical study by using the concept of hydrological optimality, represented here by the maximization of transpiration.  相似文献   

17.
为了解高寒植物幼苗对生境资源异质性的适应策略,以高寒草甸中常见的3种草本植物大耳叶风毛菊(Saussurea macrota)、甘西鼠尾草(Salvia przewalskii)和千里光(Senecio scandens)为材料,比较研究了这3种植物幼苗对不同光照和养分资源的响应。结果表明:光照和养分异质性显著影响了3种植物幼苗的性状特征和生物量分配,并存在一定的交互影响。随着光照的降低,3个物种的幼苗的生物量和根分配呈现降低趋势,但是其株高、比叶面积、叶分配、茎分配却逐渐升高。在低养分条件下,3个物种幼苗的总生物量、株高、比叶面积和叶分配均降低,而根分配均却显著增加。对于光照和养分资源异质性而言,光照异质性对高寒植物生物量分配和性状特征的改变具有更大的影响。喜阴物种大耳叶风毛菊和喜光物种甘西鼠尾草比中性生境物种千里光表现出了较大的性状特征和生物量分配的可塑性指数。  相似文献   

18.
It is unknown whether phenotypic plasticity in fitness‐related traits is associated with salinity–sodicity tolerance. This study compared growth and allocation phenotypic plasticity in two species with low salinity–sodicity tolerance (Chenopodium acuminatum and C. stenophyllum) and two species with high salinity–sodicity tolerance (Suaeda glauca and S. salsa) in a pot experiment in the Songnen grassland, China. While the species with low tolerance had higher growth and allocation plasticity than the highly tolerant species, the highly tolerant species only adjusted their growth traits and maintained higher fitness (e.g., plant height and total biomass) in response to increased soil salinity–sodicity, with low biomass allocation plasticity. Most plasticity is “apparent” plasticity (ontogenetic change), and only a few traits, for example, plant height:stem diameter ratio and root:shoot biomass ratio, represent “real” plasticity (real change in response to the environment). Our results show that phenotypic plasticity was negatively correlated with saline–sodic tolerance and could be used as an index of species sensitivity to soil salinity–sodicity.  相似文献   

19.
Han Olff 《Oecologia》1992,89(3):412-421
Summary Recent discussions on determinants of competitive success during succession require the study of the combined effect of light and nutrient availability on growth and allocation. These effects can be used to predict the outcome of competition at changing resource availabilities. This work is part of a study on the successional sequence in permanent grassland starting after fertilizer application is stopped, but with continued mowing, in order to restore former species-rich communities. This yields a successional sequence which proceeds from grasslands with a high nutrient availability and a closed canopy, to grasslands with a low nutrient availability and an open canopy. If allocation is related to competitive ability, species from the productive stages would be expected to allocate more biomass and nitrogen to leaves, which could make them better competitors for light, while species from the unproductive stages would allocate more biomass to roots, which could make them better nutrient competitors. This study reports on growth, specific leaf area (SLA), vertical display of leaves, and allocation of biomass and nitrogen of six grassland species from this successional sequence at 16 combinations of light and nutrient supply. Species from the poorer successional stages reached a lower final dry weight than species from the richer stages, over all treatment combinations. The experimental design made it possible to test for unique effects of the resource ratio effect of light and nutrients on allocation characteristics. This resource-ratio effect was defined as the ratio light intensity/(light intensity + nutrient supply rate), using standardized levels for the treatments. The within-species variation (plasticity) in both allocation of dry matter and nitrogen was linearly related to this resource-ratio effect. Some interspecific differences in this relationship were found which could be related to the position of the species along the successional gradient. However, the range of plasticity in allocation pattern expressed within each species was much larger than the differences between species. It was concluded that allocation differences between these grassland species are relatively unimportant, given the large amount of plasticity in these traits. Interspecific differences in SLA and vertical stature seemed to be more important in explaining the position of species along the successional gradient.  相似文献   

20.
黄土高原白羊草、沙棘和辽东栎细根比根长特性   总被引:11,自引:1,他引:10  
韦兰英  上官周平 《生态学报》2006,26(12):4164-4170
以黄土高原地区典型草本(白羊草)、灌木(沙棘)和乔木(辽东栎)为对象,研究了3种植物细根比根长在不同土层的分布状况以及与其它细根参数和土壤物理因子之间的相关性。结果表明,3种植物细根比根长的变化范围为6~55ram/rag。在0,80cm土层,白羊草、沙棘和辽东栎细根比根长变化范围分别为18—55mm/mg,14—4JDmm/mg,6—33mm/mg。3种植物0--80cm土层平均细根比根长从大到小依次为白羊草〉沙棘〉辽东栎。3种植物0-10cm土层细根比根长依次为沙棘〉辽东栎〉白羊草,10-80cm依次为白羊草〉辽东栎〉沙棘,表明3种植物细根比根长不仅在这两土层中的分布不具一致性,而且与0-80cm土层平均比根长也不具有一致性,进一步说明3种植物沿土壤剖面的生物量分配策略不同。相关分析表明,3种植物细根比根长与其它细根参数之间的相互关系各不相同,制约程度存在差异。与土壤物理因子的相关分析表明,3种植物细根比根长均随土壤含水量的增加而减少。土壤各级水稳性团聚体和土壤颗粒对3种植物细根比根长并无一致的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号