首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
原始林在全球碳收支中具有重要的意义,其细根在地下碳循环过程中发挥着重要作用。本研究采用连续土钻法对川西亚高山岷江冷杉原始林0~30 cm土层细根(≤2 mm)生物量及其季节动态进行了测定,并采用决策矩阵法对细根生产量和周转速率进行了估算。结果表明:岷江冷杉原始林0~30 cm土层活细根生物量和年生产量分别为286.89g·m-2和168.94 g·m-2·a-1,平均细根周转速率为0.56 a-1;细根生物量、生产量和死亡量在生长期内具有明显的动态特征;活细根生物量和生产量总体呈现单峰曲线特征,以9月最大;死细根生物量和死细根/活细根生物量在生长期内总体呈"U型"变化趋势,而死亡量总体呈增加的趋势;土层深度是影响细根动态的重要因素,活细根生物量、死细根生物量、生产量和周转速率随着土层深度的增加呈现下降的变化趋势,而死细根/活细根生物量略有增加。  相似文献   

2.
间伐对杉木不同根序细根形态、生物量和氮含量的影响   总被引:2,自引:0,他引:2  
以25年生的杉木人工林为对象,研究了间伐对杉木1~5级根的生物量、形态和氮含量的影响.结果表明: 随着根序的增加,杉木细根的生物量、直径和组织密度(RTD)显著增加,而比根长(SRL)、根长密度(RLD)和根数(RN)显著降低.间伐显著提高了1~2级根的生物量、RLD和RN,以及1级和3~5级根的RTD,而对细根的SRL和氮含量无影响;1级和3~4级根的直径显著减小;表层(0~10 cm)土壤中的2级根直径明显小于亚表层(10~20 cm)土壤,而1~3级根的RLD和1~2级根的RN和氮含量均大于亚表层土壤.
间伐和土层的相互作用仅使1~2级根的直径减小.杉木细根的变化主要与间伐后的植被生长及更新密切相关.
  相似文献   

3.
幼龄柠条细根的空间分布和季节动态   总被引:2,自引:0,他引:2  
张帆  陈建文  王孟本 《生态学报》2012,32(17):5484-5493
以晋西北黄土高原区5年生柠条(Caragana korshinskii)人工林为研究对象,应用Minirhizotron技术,分别在距茎干水平距离0 cm和50 cm处设点(以下简称为0 cm位点和50 cm位点),对林地0—100 cm土层深度范围内的柠条细根进行了观测。以2009年生长季(4—10月)的细根根长密度(RLD,mm/cm2)和表面积密度(RAD,mm2/cm2)数据为基础,结合同期环境因子(气温、降雨量、土壤温度和土壤含水量等)数据,对0 cm和50 cm两个位点的细根动态特点进行了比较研究。结果表明:(1)两个水平位点的细根垂直分布和季节变化趋势均具有一定差异,主要差异是0 cm位点0—60 cm各土层的RLD均大于50 cm位点,前者各测定期的RLD(RAD)均大于后者。因此,0 cm位点的细根分布量(4.04 mm/cm2和4.67 mm2/cm2)显著大于50 cm位点(3.07 mm/cm2和2.99 mm2/cm2)。(2)就整体(两个位点平均值)而言,RLD(RAD)的垂直分布以40—50cm土层最大,以60—70cm土层最小。RLD(RAD)的季节变化具有由小变大再变小的趋势。年生长季幼龄柠条细根的RLD和RAD总平均值分别为3.55 mm/cm2和3.83 mm2/cm2。(3)就0 cm位点、50 cm位点或整个林地而言,细根RLD的季节变化与气温和土壤温度的季节变化均具有显著正相关性。以上结果表明,幼龄柠条细根的水平分布具有"近主根"特点;RLD的季节变化与温度因子的季节变化具有高度一致性。  相似文献   

4.
三峡库区马尾松人工林细根生产和周转   总被引:2,自引:0,他引:2  
2011年3-12月,采用连续根钻法和分解袋法,研究了三峡库区20年生马尾松人工林细根的季节动态,计算了细根的年生产量和周转率.结果表明:三峡库区马尾松人工林细根(<2 mm)年均生物量为146.98 g·m-2,其中活细根年均生物量(102.92 g·m-2)远大于死细根生物量(44.06 g·m-2);不同径级细根现存量的时间动态不同,<1 mm根系季节动态较为明显,整体呈单峰型曲线;马尾松人工林细根(<2 mm)的年生产量为104.12 g·m-2·a-1,年周转率为1.05 a-1,其中<1 mm和1~2 mm的年生产量分别为58.35和45.77 g·m-2·a-1,周转率为1.41和0.69 a-1.  相似文献   

5.
不同林龄杨树细根生物量分配及其对氮沉降的响应   总被引:1,自引:0,他引:1  
氮沉降已经成为全球变化背景下的热点问题,并呈现逐渐加重趋势,了解森林生态系统对这种持续氮增长和快速氮循环的响应模式及反馈机制,对于维护森林生态系统健康具有重要的理论意义。本研究选择不同林龄杨树人工林作为试验样地,设置N0(0 g N·m-2·a-1)、N1(5 g N·m-2·a-1)、N2(10 g N·m-2·a-1)、N3(15 g N·m-2·a-1)、N4(30 g N·m-2·a-1)5个不同浓度,进行氮沉降野外模拟实验,探讨不同林龄杨树人工林细根生物量的垂直分布及对模拟氮沉降的响应。结果表明:(1)70%~80%细根生物量分配在0~20 cm土层,呈现表层富集特征;外源氮增加后,幼龄林(4年生)中,0~10 cm土层细根生物量所占比例有所增加,而中龄林(8年生)和成熟林(15年生)则不同程度的减少;(2)细根生物量主要分布在0~0.5和0.5~1.0 mm径级,其中0~0.5 mm径级细根约占总细根(2.0 mm)生物量的50%,外源氮输入增加极小径级(0~0.5 mm)的根系生物量,特别是幼龄林;(3)30~40 cm土层中,成熟林0~0.5 mm细根生物量分配量远大于幼龄林和中龄林,表明随着林龄的增加,小直径细根有向下分配趋势;(4)林龄、土层、径级以及施氮浓度4个因素的综合效应能够解释细根生物量66.3%的变异,其中林龄、土层、径级3个因素各自对细根生物量的影响极显著(P0.01),分别能解释细根生物量17.6%、16.1%、10.4%的变异,而增氮处理仅能解释细根生物量0.24%的变异,影响效应不显著(P0.05)。  相似文献   

6.
关帝山华北落叶松人工林细根生物量空间分布及季节变化   总被引:2,自引:0,他引:2  
利用根钻法研究了山西关帝山华北落叶松(Larix principis—rupprechtii Mayr)人工林细根生物量的空间分布和季节变化特征。结果表明,华北落叶松不同径级细根生物量随土层深度的增加而逐渐减少,土壤表层(0—10cm)中各径级细根的生物量最高,Ⅰ级细根(根直径0~1mm)的生物量在不同土层深度间差异显著(P〈0.05);距树干不同水平距离处各径级的细根生物量差异均未达到显著水平(P〉0.05)。在0~10cm土层中,各径级细根生物量的季节变化差异显著(P〈0.05),均表现为单峰型,峰值出现在9月份;在10~20cm和20-30cm土层中,Ⅰ级和Ⅱ级(根直径1~2mm)细根生物量季节变化差异显著,Ⅲ级细根(根直径2~5mm)和Ⅰ级死根(根直径0~2mm)生物量季节变化差异不显著。  相似文献   

7.
不同年龄三倍体毛白杨纸浆林生长期间细根变化规律   总被引:5,自引:0,他引:5  
以3、5、6及7年生三倍体毛白杨纸浆林为对象,于2008年研究生长期(4—11月)细根生物量、根长密度和细根表面积的月动态变化和垂直分布的变化。结果表明:细根生物量、根长密度或细根表面积在4—11月均表现为单峰曲线,其中细根生物量的峰值出现在8月,而根长密度和细根表面积的峰值出现在9月;细根生物量、根长密度及细根表面积的平均值随年龄的增加而增加,3、5、6及7年生的三倍体毛白杨细根生物量分别为658.3、750.6、1048.1和1115.0kg.hm-2,相应地根长密度分别为12.490×103、9.983×103、9.227×103和5.921×103m.m-3,细根表面积分别为12.17、18.68、22.23和25.28m2.m-3;细根生物量、根长密度及细根表面积的垂直分布表现为表层化,随年龄的增加表层细根增多,其中细根生物量的46.36%~51.12%、根长密度的62.77%~75.33%、细根表面积的61.74%~64.16%均分布在0~10cm土层。  相似文献   

8.
拉萨河谷杨树人工林细根的生产力及其周转   总被引:6,自引:0,他引:6  
通过土钻取样和分解袋法对拉萨河谷杨树人工林细根的生长和周转进行了测定.结果表明,在该地区杨树人工林生态系统中,约80%的细根集中分布在0~30cm土壤表层中;接近树木一侧的活(死)细根生物量均高于外侧,但二者未达到显著的差异;在生长季期间,活细根生物量平均为2.576 t · hm-2,死细根生物量平均为1.566 t · hm-2,生长高峰出现在生长季初期.经估算,拉萨河谷杨树人工林细根年生长量为3.030 t · hm-2,年周转率为1.18次;但受高原低温的影响,细根分解缓慢,分解系数k平均为0.0007~0.0008.细根的这种生长特征是杨树对高原地区短暂生长季节和雨热同季气候条件的一种适应性表现.  相似文献   

9.
帽儿山温带落叶阔叶林细根生物量、生产力和周转率   总被引:1,自引:0,他引:1  
细根在森林生态系统能量流动与物质循环中占有重要地位,但其生物量、生产和周转测定尚存在很大的不确定性,而且局域尺度空间变异机制尚不清楚。本研究分析了帽儿山温带天然次生林活细根生物量和死细根生物量在0~100 cm剖面的垂直分布与0~20 cm细根的季节动态、生产力和周转率,对比了采用连续根钻法(包括决策矩阵法和极差法)和内生长袋(直径3和5 cm)估测细根生产力和细根周转率,并探讨了可能影响细根的林分因子。结果表明: 76.8%的活细根生物量和62.9%的死细根生物量均集中在0~20 cm土层,随着深度增加,二者均呈指数形式减少。活细根生物量和死细根生物量的季节变化不显著,可能与冬季几乎无降雪而夏季降雨异常多有关。2种直径内生长袋估计的细根生产力无显著差异;对数转换后决策矩阵、极差法和内生长法估计的细根生产力和细根周转率差异显著。随着土壤养分增加,活细根生物量和死细根生物量比值显著增加,死细根生物量显著减少,但活细根生物量、细根生产力和细根周转率均无显著变化;细根周转率与前一年地上木质生物量增长量呈显著正相关,但与当年地上木质生物量增长量无显著相关关系。  相似文献   

10.
2010年11月-2011年12月, 研究了华西雨屏区31年生香樟人工林土壤表层(0~30 cm)细根生物量及碳储量.结果表明: 香樟人工林土壤0~30 cm层细根总生物量(活根+死根)和碳储量的平均值分别为1592.29 kg·hm-2和660.68 kg C·hm-2,其中活细根贡献率分别为91.1%和91.8%.随着土壤深度的增加,香樟1~5级活细根和死细根的生物量及碳储量均显著减少;随着根序等级的升高,香樟活细根生物量及碳储量显著增加.香樟细根总生物量及碳储量均在秋季最高、冬季最低,死细根生物量及碳储量为冬季最高、夏季最低;1级根和2级根生物量及碳储量均在夏季最高、冬季最低,而3~5级根则为秋季最高、冬季最低.土壤养分和水分的空间异质性是导致细根生物量和碳储量变化的主要原因.  相似文献   

11.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

12.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

13.
黄土高原白羊草、沙棘和辽东栎细根比根长特性   总被引:11,自引:1,他引:10  
韦兰英  上官周平 《生态学报》2006,26(12):4164-4170
以黄土高原地区典型草本(白羊草)、灌木(沙棘)和乔木(辽东栎)为对象,研究了3种植物细根比根长在不同土层的分布状况以及与其它细根参数和土壤物理因子之间的相关性。结果表明,3种植物细根比根长的变化范围为6~55ram/rag。在0,80cm土层,白羊草、沙棘和辽东栎细根比根长变化范围分别为18—55mm/mg,14—4JDmm/mg,6—33mm/mg。3种植物0--80cm土层平均细根比根长从大到小依次为白羊草〉沙棘〉辽东栎。3种植物0-10cm土层细根比根长依次为沙棘〉辽东栎〉白羊草,10-80cm依次为白羊草〉辽东栎〉沙棘,表明3种植物细根比根长不仅在这两土层中的分布不具一致性,而且与0-80cm土层平均比根长也不具有一致性,进一步说明3种植物沿土壤剖面的生物量分配策略不同。相关分析表明,3种植物细根比根长与其它细根参数之间的相互关系各不相同,制约程度存在差异。与土壤物理因子的相关分析表明,3种植物细根比根长均随土壤含水量的增加而减少。土壤各级水稳性团聚体和土壤颗粒对3种植物细根比根长并无一致的影响。  相似文献   

14.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:42,自引:3,他引:39  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

15.
幼龄柠条细根现存量与环境因子的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
以晋西北黄土高原区柠条(Caragana korshinskii)幼龄人工林为研究对象, 应用微根管技术(Minirhizotron technique)对林地100 cm土层范围的柠条细根生长动态进行了观测。以2007年生长季(5~9月)的根长密度(RLD, mm·cm-3)数据为基础, 对柠条细根现存量(RLDst, mm·cm-3)及其与环境因子(≥10 ℃积温、同期土壤积温、积降雨量和土壤水分等)的关系作了研究。结果表明, 40~90 cm土层是柠条细根的主要分布区和生长活跃区, 其细根占细根总量的59.7%。柠条细根现存量的季节变化特征为: 5月至9月上旬RLDst持续增加, 9月下旬RLDst略有降低。柠条细根现存量季节变化与≥10 ℃积温、同期土壤积温和积降雨量均存在极显著正相关关系。  相似文献   

16.
采集欧美杨107Ⅰ代和Ⅱ代人工林细根样品,分析杨树不同根序细根数量特征(根长度、表面积和生物量)和形态特征(比根长、根长密度、根组织密度)对季节波动的响应及其代际差异.结果表明: 杨树各根序细根数量特征(根长度、表面积和生物量)均呈明显的季节变化,且具有明显的根序差异性.低级根序细根数量特征季节差异显著,细根生物量在生长季显著增加而生长季后显著下降.高级根序细根比根长季节波动显著,而根长密度和根组织密度等形态特征波动较小.连作导致人工林杨树1~2级细根长度、生物量、比根长和根长密度在生长季显著增大.1级细根数量特征与土壤温湿度呈显著正相关,与土壤有机质和速效氮含量呈显著负相关;而2级细根数量特征仅与土壤养分显著相关.杨树人工林细根特征的季节动态及代际差异体现了杨树对细根的碳投入变化,因连作引发的土壤养分匮乏可能引发植株对根系的碳投入增加,这种碳分配格局与人工林地上部分生产力形成密切相关.  相似文献   

17.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:1,自引:1,他引:0  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

18.
林木细根寿命及其影响因子研究进展   总被引:27,自引:6,他引:21       下载免费PDF全文
 细根周转要消耗大量的C,它影响森林生态系统C分配格局与过程和养分循环,对生态系统生产力具有重要意义。细根的周转取决于细根的寿命,细根寿命越短,周转越快,根系对C的消耗也越多。大量研究表明,细根的寿命与地上部分C向根系供应的多少有密切关系,同时也与细根直径大小、土壤中N和水分的有效性、土壤温度以及根际周围的土壤动物和微生物的活动有关。本文综述了国外近年来在该领域里的研究进展,特别是对控制细根寿命的机理和主要影响因子进行了评述,目的是引起国内研究者的关注,促进我国根系生态学的研究与发展。  相似文献   

19.
 对青海海北地区高山草甸主要植物群落小嵩草(Kobresia pygmaea)草甸、矮嵩草(K.humilis)草甸、藏嵩草(K.tibetica)沼泽化草甸地上生物量动态和能量分配的研究结果表明,不同植物群落年地上净生产量及其年际动态和主要植物类群生物量季节动态具明显的差异,其生物量季节动态可由如下模型表示: Wi=Ki/(1+exp(Ai-Bit)) 植物群落地上、地下生物量的垂直分布呈典型的金字塔和倒金字塔模式。小嵩草草甸、矮嵩草草甸和藏嵩草沼泽化草甸的地上净生产量依次为368.4g·m-2·a-1、418.5g·m-2·a-1和518.4g·m-2·a-1,所固定的太阳能值依次为6655.16kJ·m-2·a-1、7610.09kJ·m-2·a-1、9488.77kJ·m-2·a-1。光能利用率分别为0.1097%、0.1256%、0.1568%。  相似文献   

20.
Specific root length as an indicator of environmental change   总被引:4,自引:0,他引:4  
Abstract

Specific root length (SRL, m g?1) is probably the most frequently measured morphological parameter of fine roots. It is believed to characterize economic aspects of the root system and to be indicative of environmental changes. The main objectives of this paper were to review and summarize the published SRL data for different tree species throughout Europe and to assess SRL under varying environmental conditions. Meta-analysis was used to summarize the response of SRL to the following manipulated environmental conditions: fertilization, irrigation, elevated temperature, elevated CO2, Al-stress, reduced light, heavy metal stress and physical disturbance of soil. SRL was found to be strongly dependent on the fine root classes, i.e. on the ectomycorrhizal short roots (ECM), and on the roots <0.5 mm, <1 mm, <2 mm and 1 – 2 mm in diameter SRL was largest for ECM and decreased with increasing diameter. Changes in soil factors influenced most strongly the SRL of ECM and roots <0.5 mm. The variation in the SRL components, root diameter and root tissue density, and their impact on the SRL value were computed. Meta-analyses showed that SRL decreased significantly under fertilization and Al-stress; it responded negatively to reduced light, elevated temperature and CO2. We suggest that SRL can be used successfully as an indicator of nutrient availability to trees in experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号