首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 336 毫秒
1.
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。  相似文献   

2.
为了揭示高寒小嵩草草甸群落在放牧扰动下,探讨土壤养分供给水平的变化对生态系统初级生产力和多样性影响,为高寒草地的退化演替机理研究提供依据,以野外样地调查和室内分析法研究了放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应.结果表明,放牧干扰不仅改变了高寒小蒿草草甸群落土壤根系和蕴育土壤根系的"载体"量及根土比例,改变了植物群落的结构和功能,而且使土壤的物理和化学特性发生了明显的改变.随着放牧强度的增加,蕴育土壤根系的基质量逐渐减少,根土比特别是0~10 cm土层的根土比例增加;"载体"量减少导致大部分地下根系由于营养供给水平的降低而死亡,归还土壤中有机质的数量逐渐减少,加之地上部分持续利用,土壤养分也在不断消耗,土壤基质量的减少和土壤资源持续供给能力的下降,草地发生逆向演替(退化),表现在:物种数减少、多样性下降、能量的分配转向地下等;土壤性状上的某些改变(土壤容重、土壤湿度等),也会引起植被组成、物种多样性变化;放牧主要通过影响土壤环境及其养分含量来改变草地群落生物量(地上、地下);土壤表面的适度干扰和原有植物的适度破坏为新成员提供了小生境,从而允许新的植物侵入群落,并提高了植物的丰富度.但是,在受到强度干扰时,草地植物群落的主要物种的优势地位发生明显的替代变化.  相似文献   

3.
土壤养分空间异质性与植物根系的觅食反应   总被引:46,自引:5,他引:41  
植物在长期进化过程中,为了最大限度地获取土壤资源,对养分的空间异质性产生各种可塑性反应.包括形态可塑性、生理可塑性、菌根可塑性等.许多植物种的根系在养分丰富的斑块中大量增生,增生程度种间差异较大,并受斑块属性(斑块大小、养分浓度)、营养元素种类和养分总体供应状况的影响.植物还通过调整富养斑块中细根的直径、分枝角、节问距以及空间构型来实现斑块养分的高效利用.根系的生理可塑性及菌根可塑性可能在一定程度上影响其形态可塑性.生理可塑性表现为处于不同养分斑块上的根系迅速调整其养分吸收速率,从而增加单位根系的养分吸收,对在时间上和空间上变化频繁的空间异质性土壤养分的利用具有重要意义,可在一定程度上弥补根系增生反应的不足.菌根可塑性目前研究较少,一些植物种的菌根代替细根实现在富养斑块中的增生.菌根增生的碳投入养分吸收效率较高、根系增生对增加养分吸收的作用较复杂,取决于养分离子在土壤中的移动性能以及是否存在竞争植物;对植物生长(竞争能力)的作用因种而异,一些敏感种由此获得生长效益,而其它一些植物种受影响较小.植物个体对土壤养分空间异质性反应能力和生长差异,影响其在群落中的地位和命运,最终影响群落组成及其结构.  相似文献   

4.
增温、施肥与种内竞争的交互作用对云杉根系属性的影响 物种竞争、气温和土壤养分是青藏高原东部高寒地区影响树木生长的重要因素。虽然已开展了大量关于物种竞争、气温、施肥单因素对树木生长的影响研究,但关于这三者的交互作用对根系生长的影响还知之甚少。因此,本研究拟通过测量根系属性(细根长、根表面积、比根长、比表面积、根尖数、根系分支数等)、根生物量,以及根系养分吸收,研究施肥和增温对物种竞争的影响,并进一步探讨施肥、增温与物种竞争的交互作用对云杉(Picea asperata)生长的影响机制以及所采取的适应策略。研究结果表明,增温、施肥和竞争均提高了细根的氮、钾浓度,但并未影响细根生物量和根长、根表面积、根尖数和根分支数等根系特征。然而,无论是增温、施肥,或是它们的联合作用,与物种竞争进行交互时,均增加了根长、根表面积、根尖数、根系分支数和养分吸收。此外,施肥降低了根比表面积、比根长和单位面积的根尖数和根分支数,增温和竞争的交互作用使根比表面积、比根长下降,其他参数不受温度和竞争的影响。该结果表明,云杉在物种竞争、气候变暖、施肥及其交互作用下保持着保守的营养策略。该研究加强了对树木应对全球变化的生理和生态适应性的理解。  相似文献   

5.
为了解高寒植物幼苗对生境资源异质性的适应策略,以高寒草甸中常见的3种草本植物大耳叶风毛菊(Saussurea macrota)、甘西鼠尾草(Salvia przewalskii)和千里光(Senecio scandens)为材料,比较研究了这3种植物幼苗对不同光照和养分资源的响应。结果表明:光照和养分异质性显著影响了3种植物幼苗的性状特征和生物量分配,并存在一定的交互影响。随着光照的降低,3个物种的幼苗的生物量和根分配呈现降低趋势,但是其株高、比叶面积、叶分配、茎分配却逐渐升高。在低养分条件下,3个物种幼苗的总生物量、株高、比叶面积和叶分配均降低,而根分配均却显著增加。对于光照和养分资源异质性而言,光照异质性对高寒植物生物量分配和性状特征的改变具有更大的影响。喜阴物种大耳叶风毛菊和喜光物种甘西鼠尾草比中性生境物种千里光表现出了较大的性状特征和生物量分配的可塑性指数。  相似文献   

6.
温带湿地植物生物量分配格局调控群落水平养分回收效率对氮磷添加的响应 养分回收是植物养分利用策略的一个重要组成部分,但养分有效性的变化如何调控群落尺度上植物养分回收过程仍不清楚。在本研究中,我们提出两个科学问题:(1)叶片和茎养分回收过程对养分有效性增加的响应格局是不是一致?(2)群落尺度上养分富集引起的植物养分回收变化是受物种内养分回收可塑性的影响还是受物种组成变化的调控?本研究以中国东北草本植物占优势的温带湿地为研究对象,利用施肥实验调查了氮和磷添加3年后物种水平上植物地上部分生物量以及叶和茎养分回收的变化趋势,并评价了群落尺度上植物养分回收对3年养分添加的响应。对于植物叶和茎而言,氮和磷添加对养分回收效率(nutrient resorption efficiency)均没有影响,但降低了相应的养分回收度(nutrient resorption proficiency)。同样地,在群落水平上,植物氮和磷养分回收度也随着相应的养分添加而降低。而且,由于植物群落组成变化及其引起的叶茎比降低,氮添加显著降低群落尺度上植物氮和磷的养分回收效率。这些研究结果表明,温带湿地植物叶和茎养分回收过程对养分有效性增加的响应是一致的,而且养分富集引起的物种组成以及叶和茎生物量分配格局变化是驱动群落尺度上植物养分回收动态的重要因素。  相似文献   

7.
疏叶骆驼刺根系对土壤异质性和种间竞争的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来, 植物根系对土壤异质性的响应和植物根系之间的相互作用一直是研究的热点。过去的研究主要是针对一年生短命植物进行的, 而且多是在人工控制的温室条件下进行的。而对于多年生植物根系对养分异质性和竞争的综合作用研究很少。该文对塔里木盆地南缘多年生植物疏叶骆驼刺(Alhagi sparsifolia)根系生长对养分异质性和竞争条件的响应途径与适应策略进行了研究, 结果表明: (1)在无竞争的条件下, 疏叶骆驼刺根系优先向空间大的地方生长, 即使另一侧有养分斑块存在, 其根系也向着空间大的一侧生长; (2)在有竞争的条件下, 疏叶骆驼刺根系生长依然是优先占领空间大的一侧, 但是竞争者的存在抑制了疏叶骆驼刺的生长, 导致其枝叶生物量和根系生物量都明显减少(p < 0.01), 而养分斑块的存在促进了疏叶骆驼刺根系的生长; (3)疏叶骆驼刺根系的生长不仅需要养分, 也需要足够的空间, 空间比养分更重要; (4)有竞争者存在的时候, 两株植物的根系都先长向靠近竞争者一侧的空间, 即先占据“共有空间”。研究结果对理解植物根系觅食行为和植物对环境的适应策略有重要意义。  相似文献   

8.
异质养分环境中一年生分蘖草本黍根系的生长特征   总被引:3,自引:0,他引:3  
为揭示黍(Panicum miliaceum L.)根系对异质养分环境的生长反应,作研究了黍根系从起始斑块向目标斑块水平生长时,时始斑块和目标斑块养分水平根生长的影响,就低养分起始珏块而言,粗根生物量,粗根长度,粗根表面积和细极长度在高养分目标斑块中的分配比例均小于其在低养分目标斑块中的分配比例,而细根长度及其密度,细根表面积指及其密度的变化恰好相反,就高养分起始斑块而言,高养分目标斑块的细根长度,细根长度密度,细根表面积指数和细根表面积密均不于低养分目标斑块,而粗根对目标斑块中养分状的反应不明显。当黍根系从桢的起始斑块进入不同的目标斑块后,目标斑块的养分状况对细根生物量及其分配无影响,而显影响细根长度和表现积,这指示细根是通过长度和表面积可塑性而不是生物量变化响应目标斑块中的养分差异。  相似文献   

9.
食根动物是植物的主要危害者,植物与食根动物之间的相互作用一直备受关注.本文从食根动物与异质性土壤、根系的关系,以及食根动物对植物的影响等方面,探讨了食根动物与根系生物量的变化、再生能力、存活,植物化学物质与其他有机体之间的作用机理和食根动物对植物生理、种群动态、植物结构的影响.建议加强对植物控制食根动物取食时采取的对策、食根动物改变生态系统C、N循环的机制以及植物寄生性线虫存在的生态系统养分的动态变化等方面的研究.  相似文献   

10.
根系间的相互作用——竞争与互利   总被引:23,自引:4,他引:19  
陈伟  薛立 《生态学报》2004,24(6):1243-1251
植物根系间的相互作用分为竞争和互利两种形式 ,它是决定植物群落动态变化和群落结构的重要因素。根系间的竞争包括植株个体自身根系的竞争以及个体与个体根系间 (同种或异种 )的竞争两方面 ,前者的发生在农林系统中是不可避免的并且很难调控 ,后者可以分为种间植物根系的竞争和种内植物根系的竞争。还阐述了根系的竞争能力和与其密切相关的根系生长率、根组织的新陈代谢、植物的生长形式和根系的空间结构等植物特性 ,同时介绍了根系对水和养分的竞争机理、形式、影响以及竞争强度计算方法。接着具体分析包括根系错位在内的各种根系互利现象和相关机理。影响根系间相互作用的限制性因子有土壤营养的异质性、大气 CO2 浓度、地下草食生物、根系生产力和生物量、根系结构、形态和生理调节、土壤养分的扩散性以及植物间距等。随着科技的进步和各门学科的发展 ,未来根系的研究方向主要体现在结合实践优化农林系统中不同物种间的作用关系、预测根系竞争在全球气候变化下的发展规律、更新实验研究方法及手段研究作用机理等 3个方面。  相似文献   

11.
There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter‐ and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow‐release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua. Temporal variation in patch nutrient level had little effect on the species’ competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda, growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis. L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda. This flexibility gave L. styraciflua an advantage in interspecific competition.  相似文献   

12.
While plant species respond differently to nutrient patches, the forces that drive this variability have not been extensively examined. In particular, the role of herbivory in modifying plant-resource interactions has been largely overlooked. We conducted a glasshouse study in which nutrient heterogeneity and root herbivory were manipulated, and used differences in foraging among plant species to predict the influence of root herbivores on these species in competition. We also tracked the influence of neighborhood composition, heterogeneity, and herbivory on whole-pot plant biomass. When herbivores were added to mixed-species neighborhoods, Eupatorium compositifolium, the most precise forager, was the only plant species to display a reduction in shoot biomass. Neighborhood composition had the greatest influence on whole-pot biomass, followed by nutrient heterogeneity; root herbivory had the smallest influence. These results suggest that root herbivory is a potential cost of morphological foraging in roots. Root herbivores reduced standing biomass and influenced the relative growth of species in mixed communities, but their effect was not strong enough at the density examined to overwhelm the bottom-up effects of resource distribution.  相似文献   

13.
Many plants proliferate roots in nutrient patches, presumably increasing nutrient uptake and plant fitness. Nutrient heterogeneity has been hypothesized to maintain community diversity because of a trade-off between the spatial extent over which plants forage (foraging scale) and their ability to proliferate roots precisely in nutrient patches (foraging precision). Empirical support for this hypothesis has been mixed, and some authors have suggested that interspecific differences in relative growth rate may be confounded with measurements of foraging precision. We collected previously published data from numerous studies of root foraging ability (foraging precision, scale, response to heterogeneity, and relative growth rate) and phylogenetic relationships for >100 plant species to test these hypotheses using comparative methods. Root foraging precision was phylogenetically and taxonomically conserved. Using a historical and phylogenetically independent contrast correlations, we found no evidence of a root foraging scale-precision trade-off, mixed support for a relative growth rate-precision relationship, and no support for the widespread assumption that foraging precision increases the benefit gained from growth in heterogeneous soil. Our understanding of the impacts of plant foraging precision and soil heterogeneity on plants and communities is less advanced than commonly believed, and we suggest several areas in which further research is needed.  相似文献   

14.
Here, we tested the predictions of a 'tragedy of the commons' model of below-ground plant competition in annual plants that experience spatial heterogeneity in their competitive environment. Under interplant competition, the model predicts that a plant should over-proliferate roots relative to what would maximize the collective yield of the plants. We predict that a plant will tailor its root proliferation to local patch conditions, restraining root production when alone and over-proliferating in the presence of other plants. A series of experiments were conducted using pairs of pea (Pisum sativum) plants occupying two or three pots in which the presence or absence of interplant root competition was varied while nutrient availability per plant was held constant. In two-pot experiments, competing plants produced more root mass and less pod mass per individual than plants grown in isolation. In three-pot experiments, peas modulated this response to conditions at the scale of individual pots. Root proliferation in the shared pot was higher compared with the exclusively occupied pot. Plants appear to display sophisticated nutrient foraging with outcomes that permit insights into interplant competition.  相似文献   

15.
Maina  Godfrey G.  Brown  Joel S.  Gersani  Mordechai 《Plant Ecology》2002,160(2):235-247
Root competition inhibits root proliferation. All else equal, a plant should invest roots in a nutrient patch devoid of roots rather than one already occupied by roots. Less clear is how a plant should respond to intra-plant versus inter-plant root competition. We consider three responses for how a plant may select habitats based on intra-versus inter-plant root competition: inter-plant avoidance, resource matching, or intra-plant avoidance. The first assumes that plants prefer to have their own space and preferentially proliferate roots away from neighboring plants. The second response, based on the ideal free distribution, assumes that plants invest so as to equalize average returns from roots, regardless of the identity of the neighboring roots. The third, based on game theory, assumes that the plant proliferates roots so as to maximize whole-plant fitness, in which case it is better to proliferate plants among a neighbor's roots than to continue proliferating amongst one's own roots. To test among these models we grew beans (Phaseolus varigaris, var. Kenya) in a greenhouse under two planting scenarios. Both scenario were tested under 0.5 and 0.1 strength of nutrient solution. Under scenario A (fence-sitters), two split-root plants each shared two patches by virtue of having roots in each. Under scenario B (owners) two plants each had their own patch. The results supported the game theory model of intra-plant avoidance (whole plant habitat selection). Fence-sitters produced 150% more root mass per individual than owners. Owners produced 90% more yield (dry mass of pods) than fence-sitters. Furthermore, owners had significantly higher shoot-root ratios than fence-sitters. These effects did not vary with high or low nutrient levels. The over-proliferation of roots under inter-plant competition (fence-sitters) was manifest by the tenth day after planting. In short, the fence-sitters engaged in a tragedy of the commons in which they competed with each other through root proliferation. At the ESS, the fitness maximizing strategy of the individual is to sacrifice collective yield in a quest to `steal' nutrients from its neighbor. The research has three implications. First, plants may be able to assess and respond to local opportunities in a manner that maximizes the good of the whole plant. Second, nutrient foraging as a game may provide a fresh perceptive for viewing root competition either intra-specifically or inter-specifically. Third, it may be possible to increase the yield of certain crop species by breeding more `docile' cultivars that do not overproduce roots in response to inter-plant competition.  相似文献   

16.

Background

We have limited understanding of root foraging responses when plants were simultaneously exposed to nutrient heterogeneity and competition, and our goal was to determine whether and how plants integrate information about nutrients and neighbors in root foraging processes.

Methodology/Principal Findings

The experiment was conducted in split-containers, wherein half of the roots of spruce (Picea asperata) seedlings were subjected to intraspecific root competition (the vegetated half), while the other half experienced no competition (the non-vegetated half). Experimental treatments included fertilization in the vegetated half (FV), the non-vegetated half (FNV), and both compartments (F), as well as no fertilization (NF). The root architecture indicators consisted of the number of root tips over the root surface (RTRS), the length percentage of diameter-based fine root subclasses to total fine root (SRLP), and the length percentage of each root order to total fine root (ROLP). The target plants used novel root foraging behaviors under different combinations of neighboring plant and localized fertilization. In addition, the significant increase in the RTRS of 0–0.2 mm fine roots after fertilization of the vegetated half alone and its significant decrease in fertilizer was applied throughout the plant clearly showed that plant root foraging behavior was regulated by local responses coupled with systemic control mechanisms.

Conclusions/Significance

We measured the root foraging ability for woody plants by means of root architecture indicators constructed by the roots possessing essential nutrient uptake ability (i.e., the first three root orders), and provided new evidence that plants integrate multiple forms of environmental information, such as nutrient status and neighboring competitors, in a non-additive manner during the root foraging process. The interplay between the responses of individual root modules (repetitive root units) to localized environmental signals and the systemic control of these responses may well account for the non-additive features of the root foraging process.  相似文献   

17.
Root foraging traits and competitive ability in heterogeneous soils   总被引:1,自引:0,他引:1  
Rajaniemi TK 《Oecologia》2007,153(1):145-152
The responses of plant roots to nutrient patches in soil may be an important component of competitive ability. In particular, the scale, precision, and rate of foraging for patchy soil resources may influence competitive ability in heterogeneous soils. In a target–neighbor experiment in the field, per-individual and per-gram competitive effects were measured for six old-field species with known root foraging scale, precision, and rate. The presence and number of nutrient patches were also manipulated in a full factorial design. Number and presence of patches did not influence the outcome of competition. Competitive ability was not related to total plant size, growth rate, or root:shoot allocation, or to root foraging precision. Per-individual competitive effects were marginally correlated with root foraging scale (biomass of roots) and root foraging rate (time required to reach a patch). Therefore, competitive ability was more closely related to ability to quickly fill a soil volume with roots than to ability to preempt resource-rich patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号