首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have reported that lecithin-conjugated recombinant human Cu, Zn-superoxide dismutase (lecithinized SOD) has greater pharmacological potency than unmodified SOD through an increase in cell membrane affinity and half-life in plasma. Recently, ischemia or hypoxia alone has been suggested to result in increased superoxide anions, which lead to apoptosis in cardiomyocytes. We tested the effect of lecithinized SOD in reducing the infarct size following prolonged myocardial ischemia without reperfusion. Rats were subjected to a 24-h left coronary occlusion. Lecithinized SOD, unmodified SOD, free lecithin derivative or PBS was administered intravenously 30 min before coronary occlusion. SOD concentration of the heart, measured by ELISA, was higher in the lecithinized SOD-treated group than in the other groups 24 h after administration. The infarct area ratio of the heart, assessed by TTC staining, in the lecithinized SOD-treated group was significantly smaller than those of the other groups. Both TUNEL-positive cardiomyocytes and DNA laddering were attenuated in the ischemic area of the heart treated with lecithinized SOD. Single bolus administration of lecithinized SOD had a cardioprotective effect against ischemia without reperfusion in the rat model of acute myocardial infarction, possibly due to its sustained high tissue concentration.  相似文献   

2.
Impaired microvascular function during myocardial ischemia and reperfusion is associated with recruitment of polymorphonuclear neutrophils (PMN) and has been attributed to decreased bioavailability of nitric oxide (NO). Whereas myeloperoxidase (MPO), a highly abundant, PMN-derived heme protein facilitates oxidative NO consumption and impairs vascular function in animal models of acute inflammation, its capacity to function in this regard during human myocardial ischemia and reperfusion remains unknown. Plasma samples from 30 consecutive patients (61 +/- 14 years, 80% male) presenting with acute myocardial infarction were collected 9 +/- 4 h after vessel recanalization and compared to plasma from healthy control subjects (n = 12). Plasma levels of MPO were higher in patients than in control subjects (1.4 +/- 0.9 vs 0.3 +/- 0.2 ng/mg protein, respectively, p < 0.0001). The addition of hydrogen peroxide to patient plasma resulted in accelerated rates of NO consumption compared to control subjects (0.53 +/- 0.25 vs 0.068 +/- 0.039 nM/s/mg protein, respectively, p < 0.0001). Myocardial tissue from patients with the same pathology revealed intense recruitment of MPO-positive PMN localized along infarct-related vessels as well as diffuse endothelial distribution of non-PMN-associated MPO immunoreactivity. Endothelium-dependent microvascular function, as assessed by an acetylcholine-dependent increase in forearm blood flow in 75 patients with symptomatic coronary artery disease, inversely correlated with MPO plasma levels (r = -0.75, p < 0.005). Plasma from patients undergoing myocardial reperfusion contained increased levels of MPO, which catalytically consumed NO in the presence of H(2)O(2). Given the correlation between intravascular MPO levels and forearm vasomotor function in patients with coronary artery disease, MPO appears to be an important modulator of vasomotor function in inflammatory vascular disease and a potential therapeutic target for treatment.  相似文献   

3.
Stobadine (ST), a novel drug with pyridoindol structure, was recently found to prevent reperfusion injury in rat brain. The aim of the present study was to reveal whether ST may prevent peroxidative changes in the heart and brain that were triggered by postischemic reperfusion of the brain. In the brain, reperfusion significantly increased the contents of malondialdehyde (MDA) by 43.8% and conjugated diens (CD) by 24.5% when compared with the end of ischemia. In the heart, contents of MDA and CD in reperfusion became elevated three fold and by 41.7%, respectively, when comparing to the values at the end of ischemia. In the heart, no significant changes in activities of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) induced by ischemia or reperfusion were detected. In contrast, reperfusion induced a slight decrease in GPx activity in the brain. In accordance with our previous results, an application of ST (2 mg/kg) to the femoral artery shortly prior to reperfusion of the ischemic brain, prevented significantly MDA and CD accumulation in brain. Nevertheless, ST was not able to prevent the brain-ischemia/reperfusion-induced elevation of MDA and CD contents in the heart.  相似文献   

4.
Short-term incomplete cerebral ischemia was induced in the rat by bilaterally clamping for 5 min the common carotid arteries; subsequent reperfusion of 10 min was obtained by removing carotid occlusion. At the end of ischemia or reperfusion, animals were sacrificed by decapitation. A control group was represented by sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. A highly sensitive HPLC method for the direct determination of malondialdehyde, oxypurines, and nucleosides was used on 200 μL of brain tissue and plasma extracts. Incomplete cerebral ischemia induced the, appearance of a significant amout of tissue malondialdehyde (undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia, significantly increased after 5 min of ischemia, being strikingly augmented after 10 min of reperfusion. A similar trend was observed for oxypurines and nucleosides. From these data, it can be affirmed that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism thus representing early biochemical markers of short-term incomplete brain ischemia, and reperfusion in the rat.  相似文献   

5.
白藜芦醇甙对大鼠心脏缺血/再灌注损伤的保护作用   总被引:1,自引:0,他引:1  
Zhang LP  Yang CY  Wang YP  Cui F  Zhang Y 《生理学报》2008,60(2):161-168
本文利用冠脉结扎/放松方法和Langendorff灌注技术,建立在体和离体大鼠心脏缺血/再灌注(ischemia/reperfusion,I/R)损伤模型,探讨白藜芦醇甙(polydatin)对大鼠I/R心肌损伤的保护作用及其机制.观察白藜芦醇甙对缺血和再灌注心律失常、心肌梗死面积、心脏收缩功能、心肌超氧化物歧化酶(superoxide dismutase,SOD)活性、丙二醛(malondialdehyde,MDA)含量、NO含量以及一氧化氮合酶(nitric oxide synthase,NOS)活性的影响.结果显示:与对照组相比,白藜芦醇甙组大鼠缺血和再灌注心律失常明显降低(P<0.05,P<0.01);心肌梗死面积显著减少(P相似文献   

6.
We have studied some hemodynamic parameters as heart rate (HR) developed pressure (DP) and maximal positive values of the first derivative of pressure (+dP/dt max) in isolated heart from control or resveratrol treated rats. In acute ex vivo experiments, resveratrol (1-100 microM) infusion in Langendorff perfused hearts did not affect contractile function in either normoxic conditions or after ischemia/reperfusion. However when semi-chronically administered by IP injection during 7 days, resveratrol which had no effect on pre-ischemic heart greatly improved post-ischemic indexes of myocardial function. Resveratrol effect is dose-dependent and seemed optimal at a plasma level of 18.5 microM. This concentration is very close to that previously shown to be optimal and non-toxic by others. These beneficial effects of resveratrol are only partly explained by its antioxidant properties as suggested by the lack of any dose-response effect on tissue malondialdehyde (MDA) levels. They are also clearly not mediated by nitric oxide (NO) elevation. When acutely infused resveratrol had no beneficial effect and therefore could not be proposed in acute scenarios of ischemia/reperfusion or stroke. However resveratrol appeared as an efficient and promising molecule in the prevention of heart dysfunction.  相似文献   

7.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

8.
Numerous experimental and clinical studies have reported a role of radical forms of oxygen in the etiology of the manifestations of reperfusion of the ischemic myocardium. However, clinical results remain controversial. The aim of this study was to ascertain the existence of reperfusion-related radical stress after thrombolysis with a marker that is easy to use and reliable. Thirty patients hospitalized for acute myocardial infarction were involved in the study. Of these, 18 had been subjected to intravenous thrombolysis (Group I) and 12 had not (Group II). They were compared to two control groups who had no history of myocardial infarction. Of these, 16 were patients with coronary heart disease hospitalized for stable angina (Group III) and 17 were patients free of any known cardiovascular disease (Group IV). Radical activity was assessed in plasma samples taken from a peripheral vein over a 10-day period of hospitalization by measuring (1) malondialdehydes (MDA) concentration using fluorometry techniques or HPLC, (2) the antioxidant activity of glutathione peroxidase (GPx), and (3) the concentration of various antiradical compounds (β-carotene, vitamins A and E, uric acid). All patients in Group I had a patent artery on coronary angiography and showed a significant increase in plasma MDA when compared to those who had not been subjected to thrombolysis (3.15 ± 0.62 and 2.70 ± 0.40 mole/l of plasma, respectively). Furthermore, GPx plasma activity was also significantly increased following thrombolysis. By contrast, there was no significant alteration in the antiradical compounds measured. These data suggest that MDA measurements (an early measurement 1–2 days and a late measurement 5–7 days after reperfusion) by fluorometry is a good marker of radical stress during reperfusion in man. The assessment of this marker in patients might represent a simple and reliable test of reperfusion efficacy following thrombolysis, and it might enable one to test the effect of various antioxidant therapies associated with thrombolytic treatment.  相似文献   

9.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

10.
Isolated Langendorff-perfused rat hearts after 20 min of normoxic perfusion in the presence of 2.5 mM Ca++ and 11 mM glucose were subjected to 30 min of global normothermic ischemia followed by 30 min of normoxic reperfusion with the starting buffer. At the end of each perfusion condition, hearts were freeze-clamped and deproteinized by 0.6 M HClO4. Two-hundred microL of the neutralized tissue extracts were analyzed by a recently developed high-performance liquid chromatography (HPLC) method for the simultaneous determination of malondialdehyde (MDA), ascorbic acid, and adenine nucleotides. By means of this analytical technique, it was possible to demonstrate that MDA is undetectable in control hearts. In contrast, 30 min of ischemia induced a modest production of MDA (0.012 mumol/g dw), while a large amount of MDA (0.103 mumol/g dw) was observed in reperfused hearts. Values referring to ascorbic acid showed that the concentration of this antioxidant progressively decreased from 1.190 (control hearts) to 0.837 (ischemic hearts) and to 0.595 mumol/g dw (reperfused hearts). The overall conclusions of this study are that reperfusion induces an oxidative stress to the isolated myocardium, a decrease of ascorbate, and an increase of lipid peroxidation. Therefore, by means of a proper analytical method, MDA may represent a valid biochemical parameter to demonstrate the relationship between myocardial reperfusion and a detectable tissue damage.  相似文献   

11.
Clinical and experimental studies have suggested benefit of treatment with intravenous glucose-insulin-potassium (GIK) in acute myocardial infarction. However, patients hospitalized with acute coronary syndromes often experience recurrent myocardial ischemia without infarction that may cause progressive left ventricular (LV) dysfunction. This study tested the hypothesis that anticipatory treatment with GIK attenuates both systolic and diastolic LV dysfunction resulting from ischemia and reperfusion without infarction in vivo. Open-chest, anesthetized pigs underwent 90 min of moderate regional ischemia (mean subendocardial blood flow 0.3 ml x g(-1) x min(-1)) and 90 min reperfusion. Eight pigs were treated with GIK (300 g/l glucose, 50 U/l insulin, and 80 meq/l KCl; infused at 2 ml x kg(-1) x h(-1)) beginning 30 min before ischemia and continuing through reperfusion. Eight untreated pigs comprised the control group. Regional LV wall area was measured with orthogonal pairs of sonomicrometry crystals. GIK significantly increased myocardial glucose uptake and lactate release during ischemia. After reperfusion, indexes of regional systolic function (external work and fractional systolic wall area reduction), regional diastolic function (maximum rate of diastolic wall area expansion), and global LV function (LV positive and negative maximum rate of change in pressure with respect to time) recovered to a significantly greater extent in GIK-treated pigs than in control pigs (all P < 0.05). The findings suggest that the clinical utility of GIK may extend beyond treatment of acute myocardial infarction to anticipatory metabolic protection of myocardium in patients at risk for recurrent episodes of ischemia.  相似文献   

12.
Cardiac ischemia associated with acute coronary syndrome and myocardial infarction is a leading cause of mortality and morbidity in the world. A rapid detection of the ischemic events is critically important for achieving timely diagnosis, treatment and improving the patient''s survival and functional recovery. This minireview provides an overview on the current biomarker research for detection of acute cardiac ischemia. We primarily focus on inosine and hypoxanthine, two by-products of ATP catabolism. Based on our published findings of elevated plasma concentrations of inosine/hypoxanthine in animal laboratory and clinical settings, since 2006 we have originally proposed that these two purine molecules can be used as rapid and sensitive biomarkers for acute cardiac ischemia at its very early onset (within 15 min), hours prior to the release of heart tissue necrosis biomarkers such as cardiac troponins. We further developed a chemiluminescence technology, one of the most affordable and sensitive analytical techniques, and we were able to reproducibly quantify and differentiate total hypoxanthine concentrations in the plasma samples from healthy individuals versus patients suffering from ischemic heart disease. Additional rigorous clinical studies are needed to validate the plasma inosine/hypoxanthine concentrations, in conjunction with other current cardiac biomarkers, for a better revelation of their diagnostic potentials for early detection of acute cardiac ischemia.  相似文献   

13.
本实验与丹参进行对比研究云南产鼠尾草属药物褐毛甘西鼠尾对急性心肌缺血再灌注损伤的保护作用。采用结扎大鼠冠脉左前降支方法造成心肌缺血再灌注模型,测定再灌注60 min后血清中CK、LDH、SOD、GSH-Px和MDA含量。实验结果显示:该药可以显著降低心肌缺血再灌注后血清CK、LDH和MDA含量,升高血清SOD和GSH-Px活力(P<0.01,P<0.05)。表明褐毛甘西鼠尾对在体缺血/再灌注心肌有保护作用。  相似文献   

14.
Endoxin-mediated myocardial ischemia reperfusion injury in rats in vitro   总被引:7,自引:0,他引:7  
Myocardial ischemia reperfusion results in an increase in intracellular sodium concentration, which secondarily increases intracellular calcium via Na(+)-Ca2+ exchange, resulting in cellular injury. Endoxin is an endogenous medium of digitalis receptor and can remarkably inhibit Na+/K(+)-ATPase activity. Although the level of plasma endoxin is significantly higher during myocardial ischemia, its practical significance is unclear. This research is to investigate whether endoxin is one of important factors involved in myocardial ischemia reperfusion injury. Ischemia reperfusion injury was induced by 30 min of global ischemia and 30 min of reperfusion in isolated rat hearts. Heart rate (HR), left ventricular developed pressure (LVDP), and its first derivative (+/-dp/dtmax) were recorded. The endoxin contents, intramitochondrial Ca2+ contents, and the Na+/K(+)-ATPase activity in myocardial tissues were measured. Myocardial damages were evaluated by electron microscopy. The endoxin and intramitochondrial Ca2+ contents in myocardial tissues were remarkably higher, myocardial membrane ATPase activity was remarkably lower, the cardiac function was significantly deteriorated, and myocardial morphological damages were severe in myocardial ischemia reperfusion group vs. control. Anti-digoxin antiserum (10, 30 mg/kg) caused a significant improvement in cardiac function (LVDP and +/-dp/dtmax), Na+/K(+)-ATPase activity, and myocardial morphology, and caused a reduction of endoxin and intramitochondrial Ca2+ contents in myocardial tissues. In the present study, the endoxin antagonist, anti-digoxin antiserum, protected the myocardium against the damages induced by ischemia reperfusion in isolated rat hearts. The results suggest that endoxin might be one of main factors mediating myocardial ischemia reperfusion injury.  相似文献   

15.
Rajesh KG  Suzuki R  Maeda H  Murio Y  Sasaguri S 《Life sciences》2006,79(18):1749-1755
Even though reperfusion is the treatment of choice in patients admitted with acute myocardial infarction, reperfusion itself has been demonstrated to activate various pathological factors especially following procedures of cardiac revascularization. 5-hydroxytryptamine (5HT) is one such factor activated during reperfusion and is known to trigger the post ischemic contractile dysfunction and pathological apoptosis. Here we demonstrate the potential effects of the 5-HT(2)A antagonist sarpogrelate in protecting the myocardium against reperfusion injury of heart. Male Wistar rats weighing between 220 and 240 g were subjected to 30 min left coronary artery (LCA) occlusion and 120 min reperfusion. Sarpogrelate (4 mg/kg) was infused intravenously for 30 min either before LCA occlusion or at reperfusion. Following reperfusion the samples were collected for infarction area, immunohistochemistry, western blotting and myocardial metabolite analysis. Sarpogrelate infusion before ischemia resulted in (a) significant recovery of post ischemic cardiac functions (LVDP, EDP), (b) significant reduction in the infarct size among the risk area after triphenyl tetrazolium chloride staining (p<0.001), (c) decreased tissue water content (p<0.05), (d) well preserved myocardial ATP (p<0.05), (e) reduction in Bcl-2 downregulation and caspase 3 activation and (g) less prevalence of apoptotic cells (3.1+/-0.4% to 15.2+/-0.6%, drug versus control). Treating the rats with sarpogrelate during reperfusion also showed similar results. This study thus demonstrates the protective effects of sarpogrelate and supports the role for 5-HT2A inhibition in preventing the reperfusion injury of the heart.  相似文献   

16.
目的: 研究一氧化氮(NO)和内皮素-1(ET-1)在大鼠肢体缺血/再灌注(LI/R)后脑损伤中的作用,探讨NO/ET-1平衡关系的变化对脑损伤的影响.方法: 在大鼠LI/R损伤模型上,应用NO合成前体物质L-精氨酸(L-Arg)、一氧化氮合酶(NOS)抑制剂氨基胍(AG)、ETA受体阻断剂BQl23进行干预,观察血浆 NO、ET-1、MDA、XOD、SOD、LDH及脑组织tNOS、iNOS、cNOS、NO、ET-1、MDA、XOD、MPO、 SOD的变化.结果: 与对照组比较,I/R组血浆MDA、XOD、LDH及脑组织MDA、XOD、MPO升高,SOD活性降低(P<0.01),脑组织tNOS和iNOS明显升高,而cNOS明显降低(P<0.01),I/R组血浆及脑组织NO、ET-1增加,NO/ET-1比值降低,脑损伤加重.应用L-Arg及BQ123后,血浆及脑组织NO/ET-1比值较I/R组升高,脑损伤减轻,应用AG后,NO/ET-1比值降低,脑损伤进一步加重.结论: 肢体缺血/再灌注后,一氧化氮与内皮素-l的比值降低时脑损伤加重.  相似文献   

17.
The consequences of increased oxidative stress, measured as the level of malondialdehyde (MDA) during ischemia/reperfusion, were studied in 48 patients in the acute phase of myocardial infarction (AMI) and a control group (21 blood donors). The serum levels of alpha-tocopherol and beta-carotene were followed. Immediately after the treatment onset the level of alpha-tocopherol started to decrease, reaching a plateau after 24 h. The consumption of beta-carotene was delayed by 90 min. Steady decline was detected during the whole time interval studied (48 h). Glutathione peroxidase (GPx) activity, as a representative of antioxidant enzymes, was estimated in whole blood. The influx of oxygenated blood was accompanied by a stimulation of GPx activity, which reached its maximum at the time of completed reperfusion. When comparing the AMI patients with the control group, the levels of MDA were found significantly increased, which indicates that oxidative stress is already increased during ischemia. Lower antioxidant levels found in the patients might either already be the result of vitamin consumption during ischemia or be a manifestation of their susceptibility to AMI. Monitored consumption of alpha-tocopherol and beta-carotene during reperfusion indicated that in the case of patients, whose level of antioxidant vitamins is below the threshold limit, a further substantial decrease of antioxidant vitamins during reperfusion could enhance the oxidative damage of the myocardium.  相似文献   

18.
We examined the relationship between clusterin and activated complement in human heart infarction and evaluated the effect of this protein on ischemic rat neonatal cardiomyoblasts (H9c2) and isolated adult ventricular rat cardiomyocytes as in vitro models of acute myocardial infarction. Clusterin protects cells by inhibiting complement and colocalizes with complement on jeopardized human cardiomyocytes after infarction. The distribution of clusterin and complement factor C3d was evaluated in the infarcted human heart. We also analyzed the protein expression of clusterin in ischemic H9c2 cells. The binding of endogenous and purified human clusterin on H9c2 cells was analyzed by flow cytometry. Furthermore, the effect of clusterin on the viability of ischemically challenged H9c2 cells and isolated adult ventricular rat cardiomyocytes was analyzed. In human myocardial infarcts, clusterin was found on scattered, morphologically viable cardiomyocytes within the infarcted area that were negative for complement. In H9c2 cells, clusterin was rapidly expressed after ischemia. Its expression was reduced after reperfusion. Clusterin bound to single annexin V-positive or annexin V and propidium iodide-positive H9c2 cells. Clusterin inhibited ischemia-induced death in H9c2 cells as well as in isolated adult ventricular rat cardiomyocytes in the absence of complement. We conclude that ischemia induces the upregulation of clusterin in ischemically challenged, but viable, cardiomyocytes. Our data suggest that clusterin protects cardiomyocytes against ischemic cell death via a complement-independent pathway.  相似文献   

19.
摘要 目的:探究低温治疗对大鼠心肌缺血模型再灌注后组织无复流的相关影响。方法:选择标准成年Sprague Dawley大鼠40只(雄性雌性各20只),平均体重(205.6±1.5)g,随机分为对照组和观察组,每组各20只,建立心肌缺血再灌注模型,对照组给予常温处理,观察组则在再灌注结束时晚期给予低温干预,对两组大鼠心肌组织无复流的差异及相关变量进行比较分析。结果:观察组的心肌缺血高危区域所占的百分比平均水平为(16.7±3.5)%,低于对照组的(35.6±2.5)%(P<0.05);观察组的组织坏死区域所占的百分比平均水平为(23.8±5.1)%,低于对照组的(56.4±3.9)%(P<0.05)。与对照组相比,观察组再灌注结束时心率降低,收缩压和平均血压升高(P<0.05);两组大鼠心肌染色宏观评价显示心肌梗死面积无明显差异,但观察组无复流的区域小于对照组。结论:在大鼠心肌缺血动物模型中通过再灌注后晚期给予治疗性的低温处理能够显著改善微血管的堵塞,并且此效应与心肌梗死的面积无关。  相似文献   

20.
Chemically modified peptide apelin-12 (MA) with enhanced resistance to degradation by proteolytic enzymes is able to protect the heart against myocardial ischemia and reperfusion. This study was aimed to explore the role of mitochondrial ATP-sensitive K+-channels (mitoKATP) in effects of MA on myocardial energy state and membrane integrity in ischemia/reperfusion (I/R) injury. Isolated perfused working rat hearts were used to simulate global ischemia and reperfusion. Acute myocardial infarction was induced by coronary artery occlusion followed by restoration of coronary blood flow in anesthetized rats. Myocardial infarct size and cardiac dysfunction were used as indices of I/R injury at the end of reperfusion. Co-infusion of 5-hydroxydecanoate (5HD), the mitoKATP blocker, along with MA before ischemia significantly decreased functional recovery of isolated hearts as compared to administration of MA alone. These effects were accompanied by increased LDH release in the myocardial effluent, reduced restoration of myocardial ATP, AN, Cr, adenylate energy charge (AEC), and lactate accumulation. Coadministration of 5HD and MA at the onset of reperfusion substantially reduced infarct-limiting effect of the peptide in rats in vivo and increased the plasma LDH and CK-MB activity compared with MA treatment. Additionally, 5HD abolished MA influence on the metabolic state of the area at risk (AAR) at the end of reperfusion. In this case, the contents of metabolites and AEC in the AAR did not differ significantly from the values in control. Therefore, restoration of myocardial energy metabolism and sarcolemma integrity via activation of mitoKATP may be of critical importance for MA-induced protection against I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号