首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Although the involvement of serotonin in exacerbating vascular abnormalities in ischemic heart disease has been established, its role in mediating changes in cardiac function due to ischemia reperfusion (IR) is poorly understood. The aim of this study was to investigate the effect of a serotonin blocker, sarpogrelate (5-HT2A antagonist), in preventing cardiac injury due to IR. Isolated rat hearts were subjected to 30 min of global ischemia followed by 1 h of reperfusion. Sarpogrelate (50 nM-0.9 microM) was infused 10 min before ischemia as well as during the reperfusion period. The IR-induced changes in left ventricular developed pressure, left ventricular end diastolic pressure, rate of pressure development, and rate of pressure decay were attenuated (P < 0.05) with sarpogrelate treatment. Sarpogrelate also decreased the ultrastructural damage and improved the high energy phosphate level in the IR hearts (P < 0.05). This study provides evidence for the attenuation of IR-induced cardiac injury by 5-HT2A receptor blockade and supports the view that serotonin may contribute to the deleterious effects of IR in the heart.  相似文献   

2.
The effects of sarpogrelate on cardiomyocyte hypertrophy   总被引:3,自引:0,他引:3  
Ikeda K  Tojo K  Tokudome G  Hosoya T  Harada M  Nakao K 《Life sciences》2000,67(24):2991-2996
Sarpogrelate was developed as an antiplatelet agent antagonizing 5-hydroxytryptamine (5-HT) receptors. It had been reported that 5-HT receptors were expressed in cardiovascular system, and that sarpogrelate had antihypertrophic effects in vascular smooth muscle cells. Cardiac hypertrophy is a major problem in cardiac diseases, so the present study was designed to elucidate the effects of sarpogrelate on cardiac hypertrophy. Cultured rat cardiomyocytes (MCs) and cardiac nonmyocytes (NMCs) were prepared by Percoll gradient and adhesion method and MCs were incubated with (MCs/NMCs) or without NMCs. As an index of protein synthesis of MCs, [3H]-leucine uptake into MCs and MCs/NMCs was measured. Sarpogrelate decreased [3H]-leucine uptake into MCs (maximum 62.6+/-20.6% of control at 10(-4)M, p<0.05 vs. control). Sarpogrelate also significantly attenuated angiotensin-II- and endothelin-1-induced [3H]-leucine uptake. These results indicated that sarpogrelate might have antihypertrophic effects and could be a useful aid for cardiovascular disease.  相似文献   

3.
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.  相似文献   

4.
The aim of the present study was to investigate the binding sites interactions and the selectivity of sarpogrelate to human 5-HT(2) receptor family (5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes) using molecular modeling. Rhodopsin (RH) crystal structures were used as template to build structural models of the human serotonin-2A and -2C receptors (5-HT(2A)R, 5-HT(2C)R), whereas for 5-HT(2B)R, we used our previously published three-dimensional (3D) models based on bacteriorhodopsin (BR). Sarpogrelate, a novel 5-HT(2)R antagonist, was docked to the receptors. Molecular dynamics (MD) simulations produced the strongest interaction for 5-HT(2A)R/sarpogrelate complex. Upon binding, sarpogrelate constraints aromatic residues network (Trp(3.28), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2A)R; Phe(3.35), Phe(6.51), Trp(7.40) in 5-HT(2B)R; Trp(3.28), Phe(3.35), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2C)R) in a stacked configuration, preventing activation of the receptor. The models suggest that the structural origin of the selectivity of sarpogrelate to 5-HT(2A)R vs both 5-HT(2B)R and 5-HT(2C)R comes from the following results: (1) The tight interaction between the antagonist and the transmembrane domain (TMD) 3. Asp(3.32) neutralizes the cationic head and interacts simultaneously with carboxylic group hydrogen of the antagonist molecule. (2) Due to steric hindrance, Ser(5.46) (vs Ala(5.46) in 5HT(2B) and 5HT(2C)) prevents sarpogrelate to enter deeply inside the hydrophobic core of the helix bundle and to interact with Pro(5.50). (3) The side chain of Ile(4.56) (vs Ile(4.56) in 5HT(2B)R and Val(4.56) in 5HT(2C)R) constraints sarpogrelate to adjust its position by translating toward the strongly attractive Asp(3.32). These results are in good agreement with binding affinities (pKi) of sarpogrelate for 5-HT(2) receptor family expressed in transfected cell.  相似文献   

5.
Reperfusion after a period of ischemia is associated with the formation of reactive oxygen species (ROS) and Ca2+ overload resulting in the opening of a nonspecific pore in the inner membrane of the mitochondria, called the mitochondrial permeability transition pore (PTP), leading to cell damage. Although endogenous antioxidants are activated because of oxidative stress following ischemia, their levels are not high enough to prevent reperfusion injury. Hence there is always a need for exogenous supplement of antioxidants, especially after acute ischemia. Here we demonstrated the effects of the antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186) in preventing reperfusion injury of the heart by inhibition of PTP opening. Ischemia (30 min) by left coronary artery (LCA) occlusion and reperfusion (120 min) in Wistar rats after pretreatment with MCI-186 (10 mg/kg iv) infusion starting from 30 min before LCA occlusion resulted in 1) less area of myocardial infarction (19.2% vs. 61.6%), 2) well-maintained myocardial ATP content (P < 0.03 vs. control), 3) decreased mitochondrial swelling and reduced cytochrome c release, 4) increased expression of BCl-2, 5) lower prevalence of apoptotic cells (14.3% vs. 2.9%), and 6) reduced DNA fragmentation in the MCI-186-treated group. These cytoprotective effects of MCI-186 were inhibited on opening PTP before MCI-186 treatment with the PTP activators lonidamine (10 mg/kg iv) or atractyloside (5 mg/kg iv) but failed to inhibit the protective effects exerted by another antioxidant, allopurinol, suggesting that the PTP inhibiting property is specific for MCI-186. These results demonstrate that the radical scavenger MCI-186, by inhibiting the opening of the PTP, prevents necrosis and cytochrome c release and hence pathological apoptosis.  相似文献   

6.
Remote ischemic preconditioning reduces myocardial infarction (MI) in animal models. We tested the hypothesis that the systemic protection thus induced is effective when ischemic preconditioning is administered during ischemia (PerC) and before reperfusion and examined the role of the K(+)-dependent ATP (K(ATP)) channel. Twenty 20-kg pigs were randomized (10 in each group) to 40 min of left anterior descending coronary artery occlusion with 120 min of reperfusion. PerC consisted of four 5-min cycles of lower limb ischemia by tourniquet during left anterior descending coronary artery occlusion. Left ventricular (LV) function was assessed by a conductance catheter and extent of infarction by tetrazolium staining. The extent of MI was significantly reduced by PerC (60.4 +/- 14.3 vs. 38.3 +/- 15.4%, P = 0.004) and associated with improved functional indexes. The increase in the time constant of diastolic relaxation was significantly attenuated by PerC compared with control in ischemia and reperfusion (P = 0.01 and 0.04, respectively). At 120 min of reperfusion, preload-recruitable stroke work declined 38 +/- 6% and 3 +/- 5% in control and PerC, respectively (P = 0.001). The force-frequency relation was significantly depressed at 120 min of reperfusion in both groups, but optimal heart rate was significantly lower in the control group (P = 0.04). There were fewer malignant arrhythmias with PerC during reperfusion (P = 0.02). These protective effects of PerC were abolished by glibenclamide. Intermittent limb ischemia during myocardial ischemia reduces MI, preserves global systolic and diastolic function, and protects against arrhythmia during the reperfusion phase through a K(ATP) channel-dependent mechanism. Understanding this process may have important therapeutic implications for a range of ischemia-reperfusion syndromes.  相似文献   

7.
We investigated the effects of tyrophostin AG 556, a tyrosine kinase inhibitor, on the phenomenon of leukocyte accumulation during ischaemia and reperfusion of the myocardium. Male anaesthetized rats were subjected to total occlusion (45 min) of the left main coronary artery followed by 5 h reperfusion (MI/R). Sham myocardial ischaemia-reperfusion rats (Sham MI/R) were used as controls. Myocardial necrosis, myocardial myeloperoxidase activity (MPO), serum creatinine phosphokinase activity (CPK) serum Tumor Necrosis Factor (TNF-alpha) and Interleukin 6 (IL-6), cardiac intercellular adhesion molecule-1 (ICAM-1) and TNF-alpha expression and myocardial contractility (left ventricle dP/dt(max)) were evaluated. Myocardial ischaemia plus reperfusion in untreated rats produced marked myocardial necrosis, increased serum CPK activity (196.5 +/- 19 U/100 ml, at the end of reperfusion) and myeloperoxidase activity (MPO, a marker of leukocyte accumulation) both in the area-at-risk (4.5 +/- 0.5 U/g/tissue) and in necrotic area (8.2 +/- 1.2 U/g/tissue), reduced myocardial contractility (1,706 +/- 52 mmHg/s, at the end of reperfusion) and induced a marked increase in the serum levels of TNF-alpha (1,950 +/- 97 pg/ml, at 1 h of reperfusion) and IL-6 (998 +/- 16 U/ml, at the end of reperfusion). Finally, myocardial ischaemia-reperfusion injury also increased cardiac mRNA for TNF-alpha and ICAM-1 in the myocardium-at risk. Tyrphostin AG 556 (0.5, 1 and 2 mg/kg subcutaneously 5 min after the onset of reperfusion) lowered myocardial necrosis and myeloperoxidase activity in the area-at-risk (1.5 +/- 0.2 U/g/tissue, following the highest dose) and in necrotic area (2.9 +/- 0.3 U/g/tissue following the highest dose), decreased serum CPK activity (96 +/- 9 U/100 ml, at the end of reperfusion), lowered serum TNF-alpha and IL-6, increased myocardial contractility (2,096 +/- 88 mmHg s, at the end of reperfusion) and reduced cardiac mRNA levels for TNF-alpha and ICAM-1. The present data suggest that tyrosine kinase inhibitors protect against myocardial ischaemia-reperfusion injury by reducing leukocyte accumulation to the ischaemic myocardium.  相似文献   

8.
Sarpogrelate, a specific 5-HT2A receptor antagonist is reported to produce a number of beneficial cardiovascular effects in diabetes mellitus. In the present investigation we have studied the effects of sarpogrelate on 5-HT receptors in heart and platelets in streptozotocin (STZ)-diabetic rats. Diabetes was induced by a single tail vein injection of STZ (45 mg/kg) and sarpogrelate (1 mg/kg, i.p.) was administered daily for 6 weeks. Injection of STZ produced significant loss of body weight, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hypertension and bradycardia. Treatment with sarpogrelate significantly lowered fasting glucose levels with corresponding increase in insulin levels. It also significantly prevented STZ-induced polydypsia, hyperphagia, hypertension, and bradycardia but not the loss of body weight. 5-HT produced dose-dependent positive inotropic effect that was found to be decreased significantly in STZ-diabetic rats. Hearts obtained from sarpogrelate treated diabetic rats did not show any decrease in responsiveness to 5-HT. Relative platelet aggregation per se was found to be higher in STZ-diabetic rats as compared to control and this was significantly prevented by sarpogrelate treatment. 5-HT produced a dose-dependent increase in platelet aggregation in non-diabetic and sarpogrelate treated diabetic rats. However, 5-HT failed to produce any increase in platelet aggregation in untreated diabetic rats. Our data suggest that STZ-induced diabetes may produce down-regulation of cardiac 5-HT2A receptors and increased platelet aggregation. Treatment with sarpogrelate seems to prevent STZ-induced down-regulation of 5-HT receptors and increase in platelet activity in diabetic rats.  相似文献   

9.
Nitric oxide (NO) is the mediator of ischemic preconditioning against myocardial infarction. Desflurane produces anesthetic preconditioning to protect the myocardium against infarction. In the model of myocardial ischemia-reperfusion injury in rabbits, we evaluated desflurane-induced ischemic preconditioning and studied its mechanism of NO synthesis. Thirty-two male adult New Zealand white rabbits were anesthetized with intravenous (IV) 30 mg/kg pentobarbital followed by 5 mg/kg/hr infusion. All rabbits were subjected to 30 minutes (min) long lasting left anterior descending coronary artery (LAD) occlusion and three hours (hr) of subsequent reperfusion. Before LAD occlusion, the rabbits were randomly allocated into four groups for preconditioning treatment (eight for each group). The control group did not receive any preconditioning treatment. The desflurane group received inhaled desflurane 1.0 MAC (minimal end-tidal alveolar concentration) for 30 min that was followed by a 15 min washout period. The L-NAME-desflurane group received L-NAME (NG-nitro-L-arginine methyl ester; non-selective Nitric Oxide Synthetase (NOS) inhibitor) 1 mg/kg IV 15 min before 1.0 MAC inhaled desflurane for 30 min. The L-NAME group received L-NAME 1 mg/kg IV. Infarct volume, ventricular arrhythmia, plasma lactate dehydrogenase (LDH), creatine kinase (CK) activity and myocardial perfusion were recorded simultaneously. We have found that hemodynamic values of the coronary blood flow before, during, and after LAD occlusion were not significantly different among these four groups. For the myocardial ischemia-reperfusion injury animals, the infarction size (mean +/- SEM) in the desflurane group was significantly reduced to 18 +/- 3% in the area at risk as compared with 42 +/- 7% in the control group, 35 +/- 6 in the L-NAME group, and 34 +/- 4% in the L-NAME-desflurane group. The plasma LDH, CK levels, and duration of ventricular arrhythmia were also significantly decreased in the desflurane group during ischemia-reperfusion injury. Our results indicate that desflurane is an anesthetic preconditioning agent, which could protect the myocardium against the ischemia-reperfusion injury. This beneficial effect of desflurane on the ischemic preconditioning is probably through NO release since L-NAME abrogates the desflurane preconditioning effect.  相似文献   

10.
5-Amino-4-imidazolecarboxamide riboside (AICAr) or acadesine has been proposed to exert cardioprotection by enhancing adenosine production in ischemic myocardium. However, there are conflicting reports on acadesine's effects in ischemic myocardium and few studies in which myocardial adenosine levels have been measured. The purpose of this study was to determine whether acadesine increases interstitial fluid adenosine levels and attenuates myocardial stunning or potentiates the effects of adenosine in the intact pig. In pentobarbital-anesthetized pigs, myocardial stunning was induced by 10 min left anterior descending coronary artery occlusion and 90 min reperfusion. Regional ventricular function was assessed by measuring systolic wall thickening, and interstitial nucleosides were estimated by cardiac microdialysis. Control hearts were compared with hearts treated with acadesine, adenosine, and adenosine plus acadesine. Adenosine pretreatment (100 microg x kg(-1) x min(-1), intracoronary) immediately prior to ischemia increased interstitial adenosine levels 9-fold and improved postischemic functional recovery from a control value of 17.6 +/- 4.1% to 43.6 +/- 3.4% of preischemic systolic wall thickening. In contrast, acadesine (20 mg/kg i.v. bolus 10 min prior to ischemia + 0.5 mg x kg (-1) x min(-1), i.v. infusion through 60 min reperfusion) had no effect on interstitial fluid adenosine levels or the recovery of regional function (21.5 +/- 5.9% recovery), nor were the functional effects of adenosine potentiated by acadesine. These findings indicate that acadesine does not enhance myocardial adenosine levels, attenuate myocardial stunning, or potentiate the cardioprotective effects of adenosine in the pig.  相似文献   

11.
This study was designed to assess the effect of a peptidoleukotriene receptor antagonist, SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 10,4353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptido-leukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 +/- 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 +/- 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 +/- 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 +/- 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 10,4353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion had no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p greater than 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

12.
During myocardial ischemia, a substantial accumulation of norepinephrine occurs in the ischemic zone due to a local nonexocytotic release of norepinephrine. Norepinephrine release is driven by the neuronal monoamine transporter (NET), which reverses its usual transmembrane transport direction. We investigated whether this local accumulation of norepinephrine contributes to irreversible myocardial injury in an in vivo model of myocardial infarction. Male, anaesthetized Wistar rats were subjected to 30 min coronary occlusion and subsequent 120 min reperfusion. Five minutes prior to coronary occlusion, the NET inhibitor desipramine was administered intravenously. Infarct size (IS) was determined by TTC-staining and was related to the area at risk (AAR). The influence of desipramine on cardiac norepinephrine release was investigated in isolated perfused hearts with 30 min of regional ischemia. Norepinephrine was measured in the effluent from the hearts by HPLC and electrochemical detection. Desipramine (0.1-0.8 mg/kg) dose-dependently reduced infarct size (IS/AAR) from 0.54 to 0.21 and suppressed postischemic norepinephrine release from 245 to 108 pg/mL. In summary, the data indicate that nonexocytotic release of norepinephrine in myocardial ischemia exaggerates acute ischemic damage, because suppression of ischemia-induced release of norepinephrine by the tricyclic antidepressant desipramine effectively reduces infarct size in an in vivo model of myocardial ischemia.  相似文献   

13.
Artificial anti-cell death protein FNK, a Bcl-x(L) derivative with three amino acid-substitutions (Y22F, Q26N, and R165K) has enhanced anti-apoptotic and anti-necrotic activity and facilitates cell survival in many species and cell types. The objectives of this study were (i) to investigate whether the protein conjugated with a protein transduction domain (PTD-FNK) reduces myocardial infarct size and improves post-ischemic cardiac function in ischemic/reperfused rat hearts, and (ii) to understand the mechanism(s) by which PTD-FNK exerts a protective effect. Isolated rat hearts were subjected to 35-min global ischemia, followed by 120-min reperfusion using the Langendorff methods. PTD-FNK (a total of 30 microl) was injected intramuscularly into the anterior wall of the left ventricle either at 1 min after induction of global ischemia (group A) or at 30 min after induction of global ischemia (at 5 min before reperfusion) (group B). In group A, infarct size was significantly reduced from 47.8+/-6.8% in the control to 30.4+/-5.2, 28.7+/-3.8, and 30.4+/-6.8% with PTD-FNK at 5, 50, and 500 nmol/l, respectively (p<0.05). Temporal recovery of left ventricular developed pressure at 60 min and 120 min after reperfusion was significantly better in PTD-FNK (50 and 500 nmol/l)-treated groups than in the control (p<0.05). In contrast, PTD-FNK treatment had no effect on group B. Western blot analysis showed that PTD-FNK markedly inhibited procaspase-3 cleavage (activation of caspase-3) and reduced the number of nuclei stained by a terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphoshate nick-end labeling (TUNEL) assay. These findings suggest that PTD-FNK reduces the volume of myocardial infarction with corresponding functional recovery, at least in part, through the suppression of myocardial apoptosis following ischemia/reperfusion.  相似文献   

14.
AIMS: To investigate whether BM-573 (N-tert-butyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl]urea), an original combined thromboxane A2 synthase inhibitor and receptor antagonist, prevents reperfusion injury in acutely ischemic pigs. METHODS: Twelve animals were randomly divided in two groups: a control group (n = 6) intravenously infused with vehicle, and a BM-573-treated group (n = 6) infused with BM-573 (10 mg kg(-1) h(-1)). In both groups, the left anterior descending (LAD) coronary artery was occluded for 60 min and reperfused for 240 min. Either vehicle or BM-573 was infused 30 min before LAD occlusion and throughout the experiment. Platelet aggregation induced by arachidonic acid ex vivo measured was prevented by BM-573. RESULTS: In both groups, LAD occlusion decreased cardiac output, ejection fraction, slope of stroke work--end-diastolic volume relationship, and induced end-systolic pressure-volume relationship (ESPVR) rightward shift, while left ventricular afterload increased. Ventriculo-arterial coupling and mechanical efficiency decreased. In both groups, reperfusion further decreased cardiac output and ejection fraction, while ESPVR displayed a further rightward shift. Ventriculo-arterial coupling and mechanical efficiency remained impaired. Area at risk, evidenced with Evans blue, was 33.2+/-3.4% of the LV mass (LVM) in both groups, and mean infarct size, revealed by triphenyltetrazolium chloride (TTC), was 27.3+/-2.6% of the LVM in the BM-573-treated group (NS). Histological examination and immunohistochemical identification of desmin revealed necrosis in the anteroseptal region similar in both groups, while myocardial ATP dosages and electron microscopy also showed that BM-573 had no cardioprotective effect. CONCLUSIONS: These data suggest that BM-573 failed to prevent reperfusion injury in acutely ischemic pigs.  相似文献   

15.
Reactive oxygen species (ROS) generated by ischemic and pharmacological preconditioning are known to act as triggers of cardiac protection; however, the involvement of ROS in ischemic and pharmacological postconditioning (PostC) in vivo and in vitro is unknown. We tested the hypothesis that ROS are involved in PostC in the mouse heart in vivo and in the isolated adult cardiac myocyte (ACM). Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion with or without ischemic or pharmacologic PostC (three cycles of 20 s reperfusion/ischemia; 1.4% isoflurane; 10 mg/kg SNC-121). Additional groups were treated with 2-mercaptopropionyl glycine (MPG), a ROS scavenger, 10 min before or after the PostC stimuli. Ischemia-, isoflurane-, and SNC-121- induced PostC reduced infarct size (24.1+/-3.2, 15.7+/-2.6, 24.9+/-2.6%, p<0.05, respectively) compared to the control group (43.4+/-3.3%). These cardiac protective effects were abolished by MPG when administered before (40.0+/-3.6, 39.3+/-3.1, 38.5+/-1.6%, respectively), but not after the PostC stimuli (26.6+/-2.3, 17.0+/-2.2, 23.9+/-1.7%, respectively). Additionally, ACM were subjected to a simulated ischemia/reperfusion protocol with isoflurane and SNC PostC. Isoflurane- and SNC-induced PostC in vitro were abolished by prior treatment with MPG. These data indicate that ROS signaling is an essential trigger of ischemic and pharmacological PostC and this is occurring at the level of the cardiac myocyte.  相似文献   

16.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

17.
Abstract— Cortical monoamine changes during ischemic episodes of varied duration and their sequence of changes following cerebral reperfusion were studied in the gerbil. Forty-one percent of 280 animals exhibited signs of cerebral hemispheric ischemia (stroke) after unilateral common carotid artery occlusion. Norepinephrine (NE) levels decreased after 60 min in the occluded hemisphere of stroked animals but dopamine (DA) levels were unaltered. S-Hydroxytryptamine (5-HT) levels became bilaterally reduced in both stroked and non-stroked animals as soon as S min after occlusion. Upon reperfusion after periods of 30 or 60 min of occlusion there was a bilateral rebound increase of cortical NE and DA levels to well above control values in stroked and non-stroked animals. 5-HT levels remained reduced in both groups. Results suggest disorder of monoamine metabolism in ischemic brain which persists during the early reperfusion period, perhaps contributing to deficits in neurological function. Monoamine changes in contralateral non-ischemic hemispheres both during the occlusion and reperfusion periods are thought further evidence of diaschisis.  相似文献   

18.
The prolonged production of reactive oxygen species due to ischemia-reperfusion (I/R) is a potential cause of the pathological remodeling that frequently precedes heart failure. We tested the ability of a potent dithiol antioxidant, bucillamine, to protect against the long-term consequences of I/R injury in a murine model of myocardial infarction. After transiently occluding the left anterior descending coronary artery for 30 min, saline or bucillamine (10 microg/g body wt) was injected intravenously as a bolus within the first 5 min of reperfusion. The antioxidant treatment continued with daily subcutaneous injections for 4 wk. There were no differences in infarct sizes between bucillamine- and saline-treated animals. After 4 wk of reperfusion, cardiac hypertrophy was decreased by bucillamine treatment (ventricular weight-to-body weight ratios: I/R + saline, 4.5 +/- 0.2 mg/g vs. I/R + bucillamine, 4.2 +/- 0.1 mg/g; means +/- SE; P < 0.05). Additionally, the hearts of bucillamine-treated mice had improved contractile function (echocardiographic measurement of fractional shortening) relative to saline controls: I/R + saline, 32 +/- 3%, versus I/R + bucillamine, 41 +/- 4% (P < 0.05). Finally, I/R-induced injury in the saline-treated mice was accompanied by a fetal pattern of gene expression determined by ribonuclease protection assay that was consistent with pathological cardiac hypertrophy and remodeling [increased atrial natriuretic peptide, beta-myosin heavy chain (MHC), skeletal alpha-actin; decreased sarco(endo)plasmic reticulum Ca2+ ATPase 2a, and alpha-MHC-to-beta-MHC ratio]. These changes in gene expression were significantly attenuated by bucillamine. Therefore, treatment with a dithiol antioxidant for 4 wk after I/R preserved ventricular function and prevented the abnormal pattern of gene expression associated with pathological cardiac remodeling.  相似文献   

19.
Oxidative stress plays an important role in the pathogenesis of myocardial ischemia and infarction. Antioxidants might then be beneficial in the prevention of these diseases. Astringinin (3,3',4',5-tetrahydroxystilbene), a resveratrol (3,4',5-trihydroxystilbene) analogue with considerably higher antioxidative activity and free radical scavenging capacity, was introduced to examine its cardioprotective effects in ischemia or ischemia-reperfusion (I/R) rats. In the present study, the left main coronary artery was occluded by the following procedures: (i) 30 min occlusion, (ii) 5 min occlusion followed by 30 min reperfusion, and (iii) 4 h occlusion. Animals were infused with and without astringinin before coronary artery occlusion. Mortality, and the severity of ischemia- and I/R-induced arrhythmias were compared. Pretreatment of astringinin dramatically reduced the incidence and duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) during either ischemia or I/R period. Astringinin at 2.5 x 10(-5) and 2.5 x 10(-4) g/kg completely prevented the mortality of animals during ischemia or I/R. During the same period, astringinin pretreatment also increased nitric oxide (NO) and decreased lactate dehydrogenase (LDH) levels in the carotid blood. In animals subjected to 4 h coronary occlusion, the cardiac infarct size (expressed as a percentage of occluded zone) was reduced from 44.4 + or - 4.1% to 19.1 + or - 2.4% by astringinin (2.5 x 10(-4) g/kg). We conclude that, astringinin is a potent antiarrhythmic agent with cardioprotective activity in ischemic and ischemic-reperfused rat heart. The beneficial effects of astringinin in the ischemic and ischemic-reperfused hearts may be correlated with its antioxidant activity and upregulation of NO production.  相似文献   

20.
Apelin, the endogenous ligand of the G protein-coupled APJ receptor, is a peptide mediator with emerging regulatory actions in the heart. The aim of the present studies was to explore potential roles of the apelin/APJ system in myocardial ischaemia/reperfusion injury. To determine the cardiac expression of apelin/APJ and potential regulation by acute ischaemic insult, Langendorff perfused rat hearts were subjected to regional ischaemia (left coronary artery occlusion, 35 min) or ischaemia followed by reperfusion (30 min). Apelin and APJ mRNA expression were then determined in ventricular myocardium by rt-PCR. Unlike APJ mRNA expression, which remained unchanged, apelin mRNA was upregulated 2.4 fold in ventricular myocardium from isolated rat hearts undergoing ischaemia alone, but returned back to control levels after 30 min reperfusion. We then proceeded to test the hypothesis that treatment with exogenous apelin is protective against ischaemia/reperfusion injury. Perfused hearts were subjected to 35 min left main coronary artery occlusion and 120 min reperfusion, after which infarct size was determined by tetrazolium staining. Exogenous Pyr(1)-apelin-13 (10(-8 )M) was perfused either from 5 min prior to 15 min after coronary occlusion, or from 5 min prior to 15 min after reperfusion. Whilst ineffective when used during ischaemia alone, apelin administered during reperfusion significantly reduced infarct size (47.6+/-2.6% of ischaemic risk zone compared to 62.6+/-2.8% in control, n=10 each, p<0.05) in hearts subject to temporary coronary occlusion followed by reperfusion. This protective effect was not abolished by co-administration of the PI3K inhibitor wortmannin (10(-7 )M, infarct size 49.8+/-4.1%, n=4) or the P70S6 kinase inhibitor rapamycin (10(-9 )M, 41.8+/-8.8%, n=4). In conclusion these results suggest that apelin may be a new and potentially important cardioprotective autacoid, upregulated rapidly after myocardial ischaemia and acting through an unknown pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号