首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We hypothesize that the pattern of cyanobacterial dominance in experimentally enriched, low-carbon lakes is related not only to the resultant N:P ratio but also to the availability of carbon for gas-vesicle synthesis. We tested this hypothesis by determining the buoyancy responses of a highly gas-vacuolate, N2-fixing cyanobacterium to P enrichment with and without induced C limitation. Enrichment of samples of Aphanizomenon schindleri (Kling et al. 1994) from blooms in Lake 227 with combinations of C, N, and P produced rapid buoyancy reductions in P treatments, reductions that were reversed within a generation time in treatments that included C or C and N as well as P. These responses are the first of their kind to be observed in experiments with lake populations of cyano-bacteria. The rapid buoyancy reductions were associated with polyphosphate accumulations in P-treated A. schindleri. Differences in buoyancy status after one generation time were linked to differences in relative gas vacuolation between samples treated with P only and samples treated with C and N as well as P. These results may explain the relative success of different types of cyanobacteria in newly enriched, low-carbon lakes. The availability of C for gasvesicle synthesis may determine whether a low N:P ratio induces N2 fixation by benthic or by planktonic cyanobacteria and whether a high NP ratio leads to dominance by non-gas-vacuolate or by highly gas-vacuolate, non-N2-fixers.  相似文献   

2.
蓝藻伪空胞的特性及浮力调节机制   总被引:5,自引:0,他引:5  
张永生  孔繁翔  于洋  张民  史小丽 《生态学报》2010,30(18):5077-5090
伪空胞为蓝藻在水体中提供浮力,使其获得适宜的生长条件,最终导致蓝藻水华暴发,了解伪空胞的特征对控制蓝藻水华暴发有重要意义。文章简要回顾了蓝藻伪空胞自1865年被Klebahn发现到1965年被正式命名的研究历程,目前已发现150多种原核生物中含有伪空胞;伪空胞是两末端呈圆锥状的中空圆柱体,伪空胞半径与临界压强遵循方程:Pc=275(r/nm)-1.67MPa;伪空胞气体含量可根据不同原理,利用Walsby伪空胞测定装置、压力浊度计和细胞流式仪测得。总结了伪空胞组成的化学特性,评述了伪空胞gvp基因丛结构功能和GvpA、GvpC的蛋白空间结构。GvpA是伪空胞合成的主要成分,gvpA在伪空胞内存在多个拷贝,其功能仍不清楚;GvpC由33个氨基酸重复单位组成,重复单位越多,伪空胞越不易破裂;概述了伪空胞3种浮力调节机制:镇重物的改变、伪空胞的合成、伪空胞的破裂;归纳了环境因子(光照、温度、氮、磷、钾)参与伪空胞浮力网络调控的途径。提出了目前伪空胞研究面临的困难和问题,对伪空胞的未来研究方向提出探索性的建议。  相似文献   

3.
The dominance of gas-vacuolate cyanobacteria is often attributedto their buoyancy and to their ability to regulate buoyancyin response to environmental conditions. Changes in absolutegas vesicles volume, carbohydrate content, protein content andcolony buoyancy of Microcystis flos-aquae were investigatedduring nitrogen-limited, phosphorus-limited and nutrient-repletegrowth. When nutrient-replete, M. flos-aquae cells consistentlyhad excess gas vesicles, which provided sufficient buoyancythat the influence of daily carbohydrate changes on cells uponfloatation was negligible. However, during nitrogen-limitedgrowth, gas vesicle volume per cell decreased significantlywith nitrogen exhaustion. The maximum decrease of gas vesiclevolume was up to 84–88%. At the same time, cellular carbohydratecontent had an accumulation trend. The decrease of gas vesiclebuoyancy together with the daily increase in carbohydrate aresuggested to explain the daily changes in the cell floatation.During phosphorus-limited growth, gas vesicle volume per celldecreased slightly (maximum to 22–32%), and they stillprovided sufficient buoyancy that most cells kept floating eventhough there were significant daily carbohydrate changes. Sincenitrogen limitation caused more significant buoyancy loss thanphosphorus limitation did, surface water blooms may disappearor appear frequently in nitrogen limited water bodies whilethey may persist a longer time in phosphorus limited water bodies.The quantitative analysis in buoyancy change by gas vesicles,carbohydrate and protein suggested that long-term buoyancy regulationwas mainly determined by changes of gas vesicle volume whereasshort-term buoyancy regulation was mainly determined by carbohydrateaccumulation and consumption. Both long-term and short-termbuoyancy regulation were influenced by cell nutrient status.Furthermore, gas vesicle volume per cell and protein contentchanged in the same way in both nitrogen-limited and phosphorus-limitedgrowth, which implied that the decrease of gas vesicles wereassociated with controls of total protein synthesis.  相似文献   

4.
Measurements of the gas vesicle space in steady-state light or phosphate-limited cultures of Aphanizomenon flos-aquae Ralfs, strain 7905 showed that gas vesicle content decreased as energy-limited growth rate increased hut was the same at several phosphate-limited growth rates. Upon a decrease in growth irradiance, gas vesicle content did increase in phosphate-limited cultures, hut the cultures remained nonbuoyant as long as P was limiting. Buoyant, energy-limited cultures lost their buoyancy in less than 2 h when exposed to higher irradiances. The primary mechanism for buoyancy loss was the accumulation of polysaccharide as ballast. Collapse of gas vesicles by turgor pressure played a minor role in the loss of buoyancy. When cultures were exposed to higher irradiances, cells continued to synthesize gas vesicles at the same rate as before the shift for at least 1 generation time. The amount of ballast required to make individual filaments in the population sink varied 4-fold. This variation appears to be due to differences in gas vesicle content among individual filaments.  相似文献   

5.
6.
Measurements of the gas vesicle space in steady-state light or phosphate-limited cultures of Aphanizomenon flos-aquae Ralfs, strain 7905 showed that gas vesicle content decreased as energy-limited growth rate increased but was the same at several phosphate-limited growth rates. Upon a decrease in growth irradiance, gas vesicle content did increase in phosphate-limited cultures, but the cultures remained nonbuoyant as long as P was limiting. Buoyant, energy-limited cultures lost their buoyancy in less than 2 h when exposed to higher irradiances. The primary mechanism for buoyancy loss was the accumulation of polysaccharide as ballast. Collapse of gas vesicles by turgor pressure played a minor role in the loss of buoyancy. When cultures were exposed to higher irradiances, cells continued to synthesize gas vesicles at the same rate as before the shift for at least 1 generation time. The amount of ballast required to make individual filaments in the population sink varied 4-fold. This variation appears to be due to differences in gas vesicle content among individual filaments.  相似文献   

7.
The objective of this study was to investigate nutrient limitation of algal abundance in Anderson-Cue Lake, a softwater clear oligotrophic lake in north-central Florida. Nutrient diffusing clay pots and cylindrical enclosures were used in the field to test effects of different combinations of nitrogen, phosphorus, silica, and carbon on algal standing crop and composition of periphytic and planktonic algae, respectively. Effects of nutrient enrichment on periphytic algae were examined in two studies conducted 31 May – 8 July and 10 June – 15 July 1991. Nutrient effects on planktonic algae were examined in one study from 13 June – 1 July 1991. Planktonic and periphytic algal biovolume was significantly higher (p<0.05) when nitrogen and carbon were added in combination than with treatments without nitrogen, carbon, or nitrogen and carbon. Treatments with nitrogen and carbon combined resulted in lower algal diversity and dominance by coccoid green algae andScenedesmus. Results indicate that carbon and nitrogen can be limiting factors to algal growth in Anderson-Cue Lake and possibly other lakes of similar water quality.  相似文献   

8.
Marine nitrogen‐fixing cyanobacteria play a central role in the open‐ocean microbial community by providing fixed nitrogen (N) to the ocean from atmospheric dinitrogen (N2) gas. Once thought to be dominated by one genus of cyanobacteria, Trichodesmium, it is now clear that marine N2‐fixing cyanobacteria in the open ocean are more diverse, include several previously unknown symbionts, and are geographically more widespread than expected. The next challenge is to understand the ecological implications of this genetic and phenotypic diversity for global oceanic N cycling. One intriguing aspect of the cyanobacterial N2 fixers ecology is the range of cellular interactions they engage in, either with cells of their own species or with photosynthetic protists. From organelle‐like integration with the host cell to a free‐living existence, N2‐fixing cyanobacteria represent the range of types of interactions that occur among microbes in the open ocean. Here, we review what is known about the cellular interactions carried out by marine N2‐fixing cyanobacteria and where future work can help. Discoveries related to the functional roles of these specialized cells in food webs and the microbial community will improve how we interpret their distribution and abundance patterns and contributions to global N and carbon (C) cycles.  相似文献   

9.
Nutrient enrichment of aquatic ecosystems caused dramatic increase in the frequency, magnitude and duration of cyanobacterial blooms. Such blooms may cause fish kills, have adverse health effects on humans and contribute to the loss of biodiversity in aquatic ecosystems. Some 50 eutrophic to hypereutrophic ponds from the Brussels Capital Region (Belgium) were studied between 2003 and 2009. A number of the ponds studied are prone to persistent cyanobacterial blooms. Because of the related health concerns and adverse effects on ecological quality of the affected ponds, a tool for assessment of the risk of cyanobacterial bloom occurrence was needed. The data acquired showed that cyanobacteria have threshold relationships with most of the environmental factors that control them. This is negatively reflected on the predictive capacity of conventional statistical methods based on linear relationships. Therefore, classification trees designed for the treatment of complex data and non-linear relationships were used to assess the risk of cyanobacterial bloom occurrence. The main factors determining cyanobacterial bloom development appeared to be phytoplankton biomass, pH and, to a lesser degree, nitrogen availability. These results suggest that to outcompete eukaryotic phytoplankters cyanobacteria need the presence of environmental constraints: carbon limitation, light limitation and nitrogen limitation, for which they developed a number of adaptations. In the absence of constraints, eukaryotic phytoplankters appear to be more competitive. Therefore, prior build up of phytoplankton biomass seems to be essential for cyanobacterial dominance. Classification trees proved to be an efficient tool for the bloom risk assessment and allowed the main factors controlling bloom development to be identified as well as the risk of bloom occurrence corresponding to the conditions determined by these factors to be quantified. The results produced by the classification trees are consistent with those obtained earlier by probabilistic approach to bloom risk assessment. They can facilitate planning management interventions and setting restoration priorities.  相似文献   

10.
Cyanobacteria are key players in the global carbon and nitrogen cycles and are thought to have been responsible for the initial rise of atmospheric oxygen during the Neoarchean. There is evidence that a class of membrane lipids known as hopanoids serve as biomarkers for bacteria, including many cyanobacteria, in the environment and in the geologic record. However, the taxonomic distributions and physiological roles of hopanoids in marine cyanobacteria remain unclear. We examined the distribution of bacteriohopanepolyols (BHPs) in a collection of marine cyanobacterial enrichment and pure cultures and investigated the relationship between the cellular abundance of BHPs and nitrogen limitation in Crocosphaera watsonii, a globally significant nitrogen‐fixing cyanobacterium. In pure culture, BHPs were only detected in species capable of nitrogen fixation, implicating hopanoids as potential markers for diazotrophy in the oceans. The enrichment cultures we examined exhibited a higher degree of BHP diversity, demonstrating that there are presently unaccounted for marine bacteria, possibly cyanobacteria, associated with the production of a range of BHP structures. Crocosphaera watsonii exhibited high membrane hopanoid content consistent with the idea that hopanoids have an important effect on the bulk physical properties of the membrane. However, the abundance of BHPs in C. watsonii did not vary considerably when grown under nitrogen‐limiting and nitrogen‐replete conditions, suggesting that the role of hopanoids in this organism is not directly related to the physiology of nitrogen fixation. Alternatively, we propose that high hopanoid content in C. watsonii may serve to reduce membrane permeability to antimicrobial toxins in the environment.  相似文献   

11.
12.
13.
14.
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into ‘composites’ representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.  相似文献   

15.
1. The genus Planktothrix (Cyanobacteria) usually produces concentrated populations of filaments in the summer metalimnion of thermally stratifying lakes. This has been associated with the action of gas vesicles, cellular structures providing positive buoyancy. At the end of the summer, filaments are carried by convective mixing deeper into the water column where some gas vesicles collapse as a result of high hydrostatic pressure. They then lose their buoyancy, sink and are lost from the euphotic zone. 2. The resistance of gas vesicles to hydrostatic pressures is critical for the survival of Planktothrix in deep lakes. However, comparative observations on populations from lakes of a range of depths and hydrodynamic regimes are still needed to examine the relationships between the adaptive trait (i.e. the ‘critical’ pressure at which each gas vesicle collapses) with the environmental factor (i.e. the maximum hydrostatic pressure). 3. To explore the adaptation of Planktothrix populations to the depth of winter circulation in different systems, we collected 276 strains of P. cf. rubescens from eight lakes (zmax = 24–410 m) in Northern Italy during summer 2009 and we analysed the multicopy gene gvpC coding for a protein that crucially influences the critical pressure. 4. The strains analysed clustered into two main groups having gas vesicles with a mean critical pressure of 1.1 and 0.9 MPa, respectively. The proportion of the stronger strains was generally positively related to lake depth, although the overall pattern was complicated by individual lake morphology and hydrology. The relative frequency of stronger filaments was (i) greatest in deep basins with concave slopes and (ii) least in one deep, but permanently stratified lake. 5. The simultaneous presence of ‘weaker’ and ‘stronger’ filaments could allow for a rapid adaptive response to changes in hydrostatic pressures, related to changes in the amplitude of vertical circulation characterising deep lakes.  相似文献   

16.
We report a study of nitrogenase activity (acetylene reduction) and hydrogen gas metabolism in intact smooth cyanobacterial mats from Hamelin Pool, Shark Bay, Western Australia. The predominant cyanobacterial population in these mats is Microcoleus chthonoplastes. The mats had a significant capacity for nitrogen fixation, predominantly attributable to the photosyn‐thetic component. By physical and chemical perturbation we revealed an active hydrogen metabolism within the mats. Most of the H2 formation was attributed to fermentative processes, whereas hydrogen was consumed in light‐dependent, together with oxygen‐ and sulfate‐dependent respiratory processes. It was concluded that H2 formed by fermentative bacteria in the dark drives a significant proportion of sulfate reduction in the mats, but there was little H2 transfer from the cyanobacteria to the sulfate‐reducing bacteria. Thus photosynthetically produced H2 gas is unlikely to significantly alter the previously measured carbon: sulfur ratio relating photosynthesis to sulfate reduction.  相似文献   

17.
Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.  相似文献   

18.
Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms.We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l–1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.  相似文献   

19.
Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus   总被引:2,自引:0,他引:2  
The importance of nitrogen (N) versus phosphorus (P) in explaining total cyanobacterial biovolume, the biovolume of specific cyanobacterial taxa, and the incidence of cyanotoxins was determined for 102 north German lakes, using methods to separate the effects of joint variation in N and P concentration from those of differential variation in N versus P. While the positive relationship between total cyanobacteria biovolume and P concentration disappeared at high P concentrations, cyanobacteria biovolume increased continually with N concentration, indicating potential N limitation in highly P enriched lakes. The biovolumes of all cyanobacterial taxa were higher in lakes with above average joint NP concentrations, although the relative biovolumes of some Nostocales were higher in less enriched lakes. Taxa were found to have diverse responses to differential N versus P concentration, and the differences between taxa were not consistent with the hypothesis that potentially N(2)-fixing Nostocales taxa would be favoured in low N relative to P conditions. In particular Aphanizomenon gracile and the subtropical invasive species Cylindrospermopsis raciborskii often reached their highest biovolumes in lakes with high nitrogen relative to phosphorus concentration. Concentrations of all cyanotoxin groups increased with increasing TP and TN, congruent with the biovolumes of their likely producers. Microcystin concentration was strongly correlated with the biovolume of Planktothrix agardhii but concentrations of anatoxin, cylindrospermopsin and paralytic shellfish poison were not strongly related to any individual taxa. Cyanobacteria should not be treated as a single group when considering the potential effects of changes in nutrient loading on phytoplankton community structure and neither should the N(2)-fixing Nostocales. This is of particular importance when considering the occurrence of cyanotoxins, as the two most abundant potentially toxin producing Nostocales in our study were found in lakes with high N relative to P enrichment.  相似文献   

20.
This review brings together our recent data on carbonic anhydrases of representatives of alkaliphilic cyanobacteria inhabiting soda lakes, which are considered as the relicts of the ancient terrestrial microbiota. The modern information about cyanobacterial carbonic anhydrases is based mainly on the study of model strains, such as Synechocystis and Synechococcus. Our results are compared with literature data. The role of carbonic anhydrases in the assimilation of inorganic carbon by cyanobacteria of soda lakes is discussed in terms of evolution of the CO2-concentrating mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号