首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line overexpressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and ceil viability by different mechanisms. Now, we expanded our studies to a cell model overexpressing both A5 and A6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein AI-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the ceil functionality is preserved by regulating PM organization and Chol exportation and homeostasis.  相似文献   

2.
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-Iocalized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOClATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.  相似文献   

3.
Plasma membrane (PM) proteome is one of the major subproteomes present in the cell,and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting. The results showed that the PM was enriched by more than 20-fold and the contamination of mitochondria was reduced by 2-fold compared with the homogenization fraction. Proteins were separated by 2DE and 1DE, trypsin-digested and submitted to ESI-Q-TOF and MALDI-TOF-TOF mass spectrometry or directly digested in solution and analyzed by LC-ESI ion trap mass spectrometry. In all, 547 non-redundant mouse liver PM proteins were identified, of which 34% contributed to plasma membrane or plasma membrane-related proteins. This study optimized and evaluated the HLPP plasma membrane proteome analysis method and made a systematic analysis on PM proteome.  相似文献   

4.
Chitooligomers or chitooligosaccharides (COS) are elicitors that bind to the plasma membrane (PM) and elicit various defense responses. However, the PM-bound proteins involved in elicitor-mediated plant defense responses still remain widely unknown. In order to get more information about PM proteins involved in rice defense responses, we conducted PM proteomic analysis of the rice suspension cells elicited by COS. A total of 14 up- or downregulated protein spots were observed on 2-D gels of PM fractions at 12 h and 24 h after COS incubation. Of them, eight protein spots were successfully identified by MS (mass spectrography) and predicted to be associated to the PM and function in plant defense, including a putative PKN/PRK1 protein kinase, a putative pyruvate kinase isozyme G, a putative zinc finger protein, a putative MAR-binding protein MFP1, and a putative calcium-dependent protein kinase. Interestingly, a COS-induced pM5-like protein was identified for the first time in plants, which is a transmembrane nodal modulator in transforming growth factor-β(TGFβ) signaling in vertebrates. We also identified two members of a rice polyprotein family, which were up-regulated by COS. Our study would provide a starting point for functionality of PM proteins in the rice basal defense.  相似文献   

5.
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo.  相似文献   

6.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   

7.
8.
9.
Transport,signaling, and homeostasis of potassium and sodium in plants   总被引:8,自引:1,他引:7  
Potassium (K+) is an essential macronutrient in plants and a lack of K+ significantly reduces the potential for plant growth and development. By contrast, sodium (Na+), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K+ can be undertaken by Na+ but K+ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K+ and Na+ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K+ and Na+ from the soil to the shoot and to the cellular - compartments; (ii) the mechanisms through which plants sense and respond to K+ and Na+ availability; and (iii) the components involved in maintenance of K+/Na+ homeostasis in plants under salt stress.  相似文献   

10.
11.
The purpose of this study is to explore and develop a novel biocompatibility drug delivery carrier for controllingontrolled drug release. The a-eleostearic acid grafted hydroxyapatite (a-ESA-g-HA) composite was synthesized by using silane coupling agent and characterized by Fourier Transformation Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM), respectively. The in vitro drug loading and controlled release behaviors of a-ESA-g-HA composite were investigated using ciprofloxacin as the model drug. The amount of ciprofloxacin loading and released was cal- culated by absorbance value which was determined by UV-Vis spectrophotometry at wavelength of 277 nm. The biocompatibility of a-ESA-g-HA composite was assessed by 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide(MTT) assay, nuclear morphology and platelet adhesion. The results showed that the a-ESA-g-HA had nontoxic and good biocompatibility. According to the results mentioned above, the a-ESA-g-HA is an effective drug delivery carrier, which could increase drug loading capacity and control drug release, so further studies are necessary to evaluate clinical application and human health care.  相似文献   

12.
Dear Editor,
The synthesis of tetrapyrroles, including chlorophylls, is central for chloroplast function. The metabolic pathway of tetrapyrrole biosynthesis in Arabidopsis is initiated with the formation of amino levulinic acid (ALA), which is con- verted by a series of common reactions to protoporphy- tin IX (Proto IX) (Tanaka et al., 2011). Then the pathway diverges into two branches: the synthesis of heme/bilin and chlorophylls. The insertion of Mg2+ into Proto IX, cata- lyzed by Mg-chelatase, is the first committed reaction of the chlorophyll branch and is considered a key step for the regulation of the whole pathway. Mg-chelatase is a het- erotrimeric enzyme composed of subunits CHLI, CHLD, and CHLH, the reaction mechanism of which has been estab- lished. It is a two-step process consisting in the Mg-ATP- dependent activation of the enzyme, which implies the formation of a ternary complex of subunits CHLI and CHLD with ATP-Mg2+, and Mg2+ chelation, which is catalyzed by CHLH driven by ATP hydrolysis, CHLI providing ATPase activity to the complex (Tanaka et al., 2011). In Arabidopsis, CHLH and CHLD are encoded by single genes, whereas two genes, CHLI-I and CHLI-2, encode the two isoforms of CHLI.  相似文献   

13.
Dear Editor, Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) islocated at an important branch point in the carbohydratemetabolism of plants. The enzyme is a homotetramer andcatalyzes the addition of bicarbonate to phosphoenolpyru-vate (PEP) to form oxaloacetate and phosphate. PEPC isregulated by metabolites and phosphorylation. AIIostericfeedback inhibition is mainly regulated by L-malate andL-aspartate which bind to a site separated from the activecenter (Kai et al., 1999; Paulus et al., 2013). Structure analy-sis of PEPC from Escherichia coli (Kai et al., 1999; Matsumuraet al., 2002), Zea rnays (Matsumura et al., 2002), Flaveria trin-ervia, and F. pringlei (Paulus et al., 2013) revealed that thesubstrate PEP and the feedback inhibitors bind to separatesites within each monomer.  相似文献   

14.
《植物生理学报》2013,(6):1988-1991
Dear Editor, Self-incompatibility (SI) is a genetic mechanism through which flowering plants prevent self-pollination to ensure out- crossing and genetic diversity. In Brassica sp., this mechanism is controlled by the self-incompatibility (S) locus, in which, the stigmatic 'S-locus receptor kinase (SRK)' recognizes the 'S-locus cysteine rich protein (SCR)' from the self-pollen to elicit an active rejection response. This results in blocking of compatibil- ity factors from being delivered to the site of pollen attachment leading to self-pollen rejection (Chapman and Goring, 2010). In contrast, following recognition of compatible signals from the cross-pollen or compatible pollen (CP), the stigma releases its resources such as water and nutrients to the dry pollen so that the pollen tube can germinate and penetrate the stigmatic cuticle leading to successful fertilization. Thus, an incompatible or self-pollen is fully capable of eliciting a compatible response, but is actively rejected before compatible responses can occur.  相似文献   

15.
16.
The low-density lipoprotein receptor (LDLR) mediates cholesterol homeostasis through endocytosis of lipoprotein particles, particularly low-density lipoproteins (LDLs). Normally, the lipoprotein particles are released in the endosomes and the receptors recycle to the cell surface. Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the gene encoding the LDLR. These mutations are divided into five functional classes where Class 5 mutations encode receptors that suffer from ligand-induced degradation and recycling deficiency. The aim of this study was to investigate whether it is possible to prevent the fast ligand-induced degradation of Class 5-mutant LDLR and to restore its ability to recycle to the cell surface. E387K is a naturally occurring Class 5 mutation found in FH patients, and in the present study, we used Chinese hamster ovary cells transfected with an E387K-mutant LDLR. Abrogation of endosomal acidification by adding bafdomycin A1 or addition of the irreversible serine protease inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) and 3,4-dichloroisocoumarin (DCI), prevented the degradation of the E387K-mutant LDLR. However, the undegraded receptor did not recycle to the cell surface in the presence of LDL. Unexpectedly, AEBSF caused aggregation of early endosome antigen-1positive endosomes and the intracellular trapped LDLR co-localized with these aggregated early endosomes.  相似文献   

17.
Microorganisms are major drivers of elemental cycling in the biosphere. Determining the abundance of microbial functional traits involved in the transformation of nutrients, including carbon(C), nitrogen(N), phosphorus(P) and sulfur(S), is critical for assessing microbial functionality in elemental cycling. We developed a high-throughput quantitative-PCR-based chip, Quantitative microbial element cycling(QMEC), for assessing and quantifying the genetic potential of microbiota to mineralize soil organic matter and to release C, N, P and S. QMEC contains 72 primer pairs targeting 64 microbial functional genes for C, N, P, S and methane metabolism. These primer pairs were characterized by high coverage(average of 18–20 phyla covered per gene)and sufficient specificity(70% match rate) with a relatively low detection limit(7–102 copies per run). QMEC was successfully applied to soil and sediment samples, identifying significantly different structures, abundances and diversities of the functional genes(P0.05). QMEC was also able to determine absolute gene abundance. QMEC enabled the simultaneous qualitative and quantitative determination of 72 genes from 72 samples in one run, which is promising for comprehensively investigating microbially mediated ecological processes and biogeochemical cycles in various environmental contexts including those of the current global change.  相似文献   

18.
Keeble JA  Gilmore AP 《Cell research》2007,17(12):976-984
Most defective and unwanted cells die by apoptosis, cells without damaging the surrounding tissue. Once a an exquisitely controlled genetic programme for removing such cell has committed to apoptosis, the process is remarkably efficient, and is completed within a few minutes of initiation. This point of no retum for an apoptotic cell is commonly held to be the point at which the outer mitochondrial membrane is permeabilised, a process regulated by the Bcl-2 family of proteins. How these proteins regulate this decision point is central to diseases such as cancer where apoptotic control is lost. In this review, we will discuss apoptotic signalling and how a cell makes the irreversible decision to die. We will focus on one set of survival signals, those derived by cell adhesion to the extracellular matrix (ECM), and use these to highlight the complexities of apoptotic signalling. In particular, we will illustrate how multiple signalling pathways converge to determine critical cell fate decisions.  相似文献   

19.
《植物生理学报》2013,(6):1992-1995
Dear Editor, The plant hormone indole-3-acetic acid (IAA) has long been used in plant culture media for practical applications and sci- entific inquiries. The use of IAA is complicated by the fact that IAA is a photo-labile compound. In Murashige and Skoog (MS) plant media (Murashige and Skoog, 1962), the concen- trations of salts and mineral nutrients are known to hasten the photodegradation of IAA under white light (Dunlap and Robacker, 1988). This degradation can be virtually eliminated by the use of a yellow-colored light filter that removes UV, violet, and some of the blue wavelengths from the incident light (Stasinopoulos and Hangarter, 1990). However, the use of yellow light clearly affects the quality of light that the plants under study receive. In addition to applications in plants, IAA has been used in human health applications.  相似文献   

20.
Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M. brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE, About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号