首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Most tRNAs carry a G at their 5' termini, i.e. at position +1. This position corresponds to the position immediately downstream of the site of cleavage in tRNA precursors. Here we studied RNase P RNA-mediated cleavage of substrates carrying substitutions/modifications at position +1 in the absence of the RNase P protein, C5, to investigate the role of G at the RNase P cleavage site. We present data suggesting that the exocyclic amine (2NH2) of G+1 contributes to cleavage site recognition, ground state binding and catalysis by affecting the rate of cleavage. This is in contrast to O6, N7 and 2'OH that are suggested to affect ground state binding and rate of cleavage to significantly lesser extent. We also provide evidence that the effects caused by the absence of 2NH2 at position +1 influenced the charge distribution and conceivably Mg2+ binding at the RNase P cleavage site. These findings are consistent with models where the 2NH2 at the cleavage site (when present) interacts with RNase P RNA and/or influences the positioning of Mg2+ in the vicinity of the cleavage site. Moreover, our data suggest that the presence of the base at +1 is not essential for cleavage but its presence suppresses miscleavage and dramatically increases the rate of cleavage. Together our findings provide reasons why most tRNAs carry a guanosine at their 5' end.  相似文献   

2.
Homing endonucleases initiate mobility of their host group I introns by binding to and cleaving lengthy recognition sequences that are typically centered on the intron insertion site (IS) of intronless alleles. Because the intron interrupts the endonucleases' recognition sequence, intron-containing alleles are immune to cleavage by their own endonuclease. I-TevI and I-BmoI are related GIY-YIG endonucleases that bind a homologous stretch of thymidylate synthase (TS)-encoding DNA but use different strategies to distinguish intronless from intron-containing substrates. I-TevI discriminates between substrates at the level of DNA binding, as its recognition sequence is centered on the intron IS. I-BmoI, in contrast, possesses a very asymmetric recognition sequence with respect to the intron IS, binds both intron-containing and intronless TS-encoding substrates, but efficiently cleaves only intronless substrate. Here, we show that I-BmoI is extremely tolerant of multiple substitutions around its cleavage sites and has a low specific activity. However, a single G-C base pair, at position -2 of a 39-base pair recognition sequence, is a major determinant for cleavage efficiency and distinguishes intronless from intron-containing alleles. Strikingly, this G-C base pair is universally conserved in phylogenetically diverse TS-coding sequences; this finding suggests that I-BmoI has evolved exquisite cleavage requirements to maximize the potential to spread to variant intronless alleles, while minimizing cleavage at its own intron-containing allele.  相似文献   

3.
Members of the ribonuclease III family are the primary agents of double-stranded (ds) RNA processing in prokaryotic and eukaryotic cells. Bacterial RNase III orthologs cleave their substrates in a highly site-specific manner, which is necessary for optimal RNA function or proper decay rates. The processing reactivities of Escherichia coli RNase III substrates are determined in part by the sequence content of two discrete double-helical elements, termed the distal box (db) and proximal box (pb). A minimal substrate of E.coli RNase III, μR1.1 RNA, was characterized and used to define the db and pb sequence requirements for reactivity and their involvement in cleavage site selection. The reactivities of μR1.1 RNA sequence variants were examined in assays of cleavage and binding in vitro. The ability of all examined substitutions in the db to inhibit cleavage by weakening RNase III binding indicates that the db is a positive determinant of RNase III recognition, with the canonical UA/UG sequence conferring optimal recognition. A similar analysis showed that the pb also functions as a positive recognition determinant. It also was shown that the ability of the GC or CG bp substitution at a specific position in the pb to inhibit RNase III binding is due to the purine 2-amino group, which acts as a minor groove recognition antideterminant. In contrast, a GC or CG bp at the pb position adjacent to the scissile bond can suppress cleavage without inhibiting binding, and thus act as a catalytic antideterminant. It is shown that a single pb+db ‘set’ is sufficient to specify a cleavage site, supporting the primary function of the two boxes as positive recognition determinants. The base pair sequence control of reactivity is discussed within the context of new structural information on a post-catalytic complex of a bacterial RNase III bound to the cleaved minimal substrate.  相似文献   

4.
The 3C-like proteinase of severe acute respiratory syndrome coronavirus (SARS) has been proposed to be a key target for structural based drug design against SARS. We have designed and synthesized 34 peptide substrates and determined their hydrolysis activities. The conserved core sequence of the native cleavage site is optimized for high hydrolysis activity. Residues at position P4, P3, and P3' are critical for substrate recognition and binding, and increment of beta-sheet conformation tendency is also helpful. A comparative molecular field analysis (CoMFA) model was constructed. Based on the mutation data and CoMFA model, a multiply mutated octapeptide S24 was designed for higher activity. The experimentally determined hydrolysis activity of S24 is the highest in all designed substrates and is close to that predicted by CoMFA. These results offer helpful information for the research on the mechanism of substrate recognition of coronavirus 3C-like proteinase.  相似文献   

5.
C Conrad  R Rauhut    G Klug 《Nucleic acids research》1998,26(19):4446-4453
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prerequisite, the question arises what structural features exactly make this extra stem-loop an RNase III cleavage site, distinguishing it from the plethora of stem-loops in 23S rRNA? We used RNase III purified from R.capsulatus and Escherichia coli, respectively, together with well known substrates for E.coli RNase III and RNA substrates derived from the special cleavage site in R.capsulatus 23S rRNA to study the interaction between the Rhodobacter enzyme and the fragmentation site. Although both enzymes are very similar in their amino acid sequence, they exhibit significant differences in binding and cleavage of these in vitro substrates.  相似文献   

6.
A series of synthetic peptides representing authentic proteolytic cleavage sites of human rhinovirus type 14 were assayed as substrates for purified 3C protease. Competition cleavage assays were employed to determine the relative specificity constants (Kcat/Km) for substrates with sequences related to the viral 2C-3A cleavage site. Variable length peptides representing the 2C-3A cleavage site were cleaved with comparable efficiency. These studies defined a minimum substrate of 6 amino acids (TLFQ/GP), although retention of the residue at position P5 (ETLFQ/GP) resulted in a better substrate by an order of magnitude. Amino acid substitutions at position P5, P4, P1', or P2' indicated that the identity of the residue at position P5 was not critical, whereas substitutions at position P4, P1' or P2' resulted in substrates with Kcat/Km values varying over 2 orders of magnitude. In contrast to the 2C-3A cleavage site, small peptide derivatives representative of the 3A-3B cleavage site were relatively poor substrates, which suggested that residues flanking the minimum core sequence may influence susceptibility to cleavage. The 3C protease of rhinovirus type 14 was also capable of cleaving peptides representing comparable cleavage sites predicted for coxsackie B virus and poliovirus.  相似文献   

7.
Y Xiang  T W Ridky  N K Krishna    J Leis 《Journal of virology》1997,71(3):2083-2091
Proteolytic processing of the Rous sarcoma virus (RSV) Gag precursor was altered in vivo through the introduction of amino acid substitutions into either the polyprotein cleavage junctions or the PR coding sequence. Single amino acid substitutions (V(P2)S and P(P4)G), which are predicted from in vitro peptide substrate cleavage data to decrease the rate of release of PR from the Gag polyprotein, were placed in the NC portion of the NC-PR junction. These substitutions do not affect the efficiency of release of virus-like particles from COS cells even though recovered particles contain significant amounts of uncleaved Pr76gag in addition to mature viral proteins. Single amino acid substitutions (A(P3)F and S(P1)Y), which increase the rate of PR release from Gag, also do not affect budding of virus-like particles from cells. Substitution of the inefficiently cleaved MA-p2 junction sequence in Gag by eight amino acids from the rapidly cleaved NC-PR sequence resulted in a significant increase in cleavage at the new MA-p2 junction, but again without an effect on budding. However, decreased budding was observed when the A(P3)F or S(P1)Y substitution was included in the NC-PR junction sequence between the MA and p2 proteins. A budding defect was also caused by substitution into Gag of a PR subunit containing three amino acid substitutions (R105P, G106V, and S107N) in the substrate binding pocket that increase the catalytic activity of PR. The defect appears to be the result of premature proteolytic processing that could be rescued by inactivating PR through substitution of a serine for the catalytic aspartic acid residue. This budding defect was also rescued by single amino acid substitutions in the NC-PR cleavage site which decrease the rate of release of PR from Gag. A similar budding defect was caused by replacing the Gag PR with two PR subunits covalently linked by four glycine residues. In contrast to the defect caused by the triply substituted PR, the budding defect observed with the linked PR dimer could not be rescued by NC-PR cleavage site mutations, suggesting that PR dimerization is a limiting step in the maturation process. Overall, these results are consistent with a model in which viral protein maturation occurs after PR subunits are released from the Gag polyprotein.  相似文献   

8.
We have analyzed the sequence requirements for the binding of the carboxy-terminal (DNA binding) domain of gamma delta resolvase to its recognition site. Using an efficient procedure for saturation mutagenesis we have obtained 31 of the possible 36 base substitutions within the 12 bp minimal binding sequence (using a modified right half of resolvase binding site I as the model sequence). Binding assays in vitro with the 43 residue DNA binding domain show that certain substitutions at eight of the 12 positions strongly inhibit complex formation, increasing the dissociation constant by 100-fold or more. The critical positions fall into two groups: the outside 6 bp of the binding sequence (positions 1-6) and positions 9-10. These positions correspond to the regions where the DNA binding domain spans the major and minor grooves, respectively, of its binding site. Base substitutions at the intervening positions (7 and 8) have more modest (less than 20-fold) effects on binding while substitutions at the inner two positions (11 and 12) are virtually neutral. The hierarchies of base preferences within each critical segment suggest that resolvase makes base-specific contacts in both major and minor grooves.  相似文献   

9.
We have probed the contacts between EcoRI endonuclease and the central phosphate of its recognition site GAApTTC, using synthetic oligonucleotides containing single stereospecific Rp- or Sp-phosphorothioates (Ps). These substitutions produce subtle stereospecific effects on EcoRI endonuclease binding and cleavage. An Sp-Ps substitution in one strand of the DNA duplex improves binding free energy by -1.5 kcal/mol, whereas the Rp-Ps substitution has an unfavorable effect (+0.3 kcal/mol) on binding free energy. These effects derive principally from changes in the first order rate constants for dissociation of the enzyme-DNA complexes. The first order rate constants for strand scission are also affected, in that a strand containing Sp-Ps substitution is cleaved 2 to 3 times more rapidly than a strand containing a normal prochiral phosphate, whereas a strand containing Rp-Ps substitution is cleaved about 3 times slower than normal. As a result, single-strand substitutions produce pronounced asymmetry in the rates of cleavage of the two DNA strands, and this effect is exaggerated in an Rp,Sp-heteroduplex. Ethylation-interference footprinting indicates that none of the Ps substitutions cause any major change in contacts between endonuclease and DNA phosphates. When an Sp-Ps localizes P = O in the DNA major groove, a hydrogen-bonding interaction with the backbone amide-NH of Gly116 of the endonuclease is improved relative to that with a prochiral phosphate having intermediate P-O bond order and delocalized charge.  相似文献   

10.
Mapping the active site of meprin-A with peptide substrates and inhibitors   总被引:2,自引:0,他引:2  
R L Wolz  R B Harris  J S Bond 《Biochemistry》1991,30(34):8488-8493
The extended substrate-binding site of meprin-A, a tetrameric metalloendopeptidase from brush border membranes of mouse kidney proximal tubules, was mapped with a series of peptide substrates. Previous studies led to the development of the chromogenic substrate Phe5(4-nitro)bradykinin for meprin-A. With this substrate, several biologically active peptides were screened as alternate substrate inhibitors, and, of these, bradykinin (RPPGFSPFR) was found to be the best substrate with a single cleavage site (Phe5-Ser6). Three types of bradykinin analogues were used for a systematic investigation of substrate specificity: (1) nonchromogenic bradykinin analogues with substitutions in the P3 to P3' subsites were used as alternative substrate inhibitors of nitrobradykinin hydrolysis, (2) analogues of nitrobradykinin with variations in the P1' position were tested as substrates, and (3) intramolecularly quenched fluorogenic bradykinin analogues with substitutions in the P1 to P3 sites were tested as substrates. A wide variety of substitutions in P1' had little effect on KM (174-339 microM) but markedly affected kcat (51.5 s-1 = A greater than S greater than R greater than F greater than K greater than T greater than E = 0). Substitutions in P1 had a greater effect on KM (366 microM-2.46 mM) and also strongly affected kcat (98.5 s-1 = A greater than F much greater than L greater than E greater than K = 2.4 s-1). The variety of allowed cleavages indicates that meprin-A does not have strict requirements for residues adjacent to the cleavage site. Substitutions farther from the scissle bond also affected binding and hydrolysis, demonstrating that multiple subsite interactions are involved in meprin-A action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
We have synthesized a series of oligonucleotides containing the EcoRI (GAATTC) or EcoRV (GATATC) recognition site within which or adjacent to which thymidine was substituted by uridine or derivatives of uridine. The effects of these substitutions on the rate of the EcoRI and EcoRV catalyzed cleavage reaction were investigated. Our results show that most of the substitutions within the site are quite well tolerated by EcoRI, not, however, by EcoRV. We conclude that the thymin residues most likely are not directly involved in the recognition process of the EcoRI reaction. In contrast, they are major points of contact, between substrate and enzyme in the EcoRV reaction. The effects of substitutions in the position adjacent to the recognition site is also markedly different for EcoRI and EcoRV. Here, EcoRI seems to be considerably more selective than EcoRV.  相似文献   

13.
The effects of nucleotide analogue substitution on the cleavage efficiencies of type II restriction endonucleases have been investigated. Six restriction endonucleases (EcoRV, SpeI, XbaI, XhoI, PstI and SphI) were investigated respectively regarding their cleavage when substrates were substituted by 2′-O-methyl nucleotide (2′-OMeN) and phosphorothioate (PS). Substitutions were made in the recognition sequence and the two nucleotides flanking the recognition sequence for each endonuclease. The endonuclease cleavage efficiencies were determined using FRET-based assay. Results demonstrated a position-dependent inhibitory effect of substitution on the cleavage efficiency for all the six endonucleases. In general, the 2′-OMeN substitutions had greater impact than the PS substitutions on the enzymatic activities. Nucleotides of optimal substitutions for protection against RE cleavage were identified. Experimental results and conclusions in this study facilitate our insight into the DNA-protein interactions and the enzymatic cleavage mechanism, particularly for those whose detailed structure information is not available. In addition, the information could benefit the development of bioengineering and synthetic biology.  相似文献   

14.
Vaccinia DNA topoisomerase (vTopo) catalyzes highly specific nucleophilic substitution at a single phosphodiester linkage in the pentapyrimidine recognition sequence 5'-(C/T)+5C4+C3+T+2T+1p \N-1 using an active-site tyrosine nucleophile, thereby expelling a 5' hydroxyl leaving group of the DNA. Here, we report the energetic effects of subtle modifications to the major-groove hydrogen-bond donor and acceptor groups of the 3'-GGGAA-5' consensus sequence of the nonscissile strand in the context of duplexes in which the scissile strand length was progressively shortened. We find that the major-groove substitutions become energetically more damaging as the scissile strand is shortened from 32 to 24 and 18 nucleotides, indicating that enzyme interactions with the duplex region present in the 32-mer but not the 24- or 18-mer weaken specific interactions with the DNA major groove. Regardless of strand length, the destabilizing effects of the major-groove substitutions increase as the reaction proceeds from the Michaelis complex to the transition state for DNA cleavage and, finally, to the phosphotyrosine-DNA covalent complex. These length-dependent anticooperative interactions involving the DNA major groove and duplex regions 3' to the cleavage site indicate that the major-groove binding energy is fully realized late during the reaction for full-length substrates but that smaller more flexible duplex substrates feel these interactions earlier along the reaction coordinate. Such anticooperative binding interactions may play a role in strand exchange and supercoil unwinding activities of the enzyme.  相似文献   

15.
It has been proposed that recognition of specific DNA sequences by proteins is accomplished by hydrogen bond formation between the protein and particular groups that are accessible in the major and minor grooves of the DNA. We have examined the DNA-protein interactions involved in the recognition of the hexameric DNA sequence, GAATTC, by the EcoRI restriction endonuclease by using derivatives of an oligodeoxyribonucleotide that contain a variety of base analogues. The base analogues hypoxanthine, 2-aminopurine, 2,6-diaminopurine, N6-methyladenine, 5-bromouracil, uracil, 5-bromocytosine, and 5-methylcytosine were incorporated as single substitutions into the octadeoxyribonucleotide d(pG-G-A-A-T-T-C-C). The effects of the substitutions on the interactions between the EcoRI endonuclease and its recognition sequence were monitored by determining the steady state kinetic values of the hydrolysis reaction. The substitutions resulted in effects that varied from complete inactivity to enhanced reactivity. The enzyme exhibited Michaelis-Menten kinetics with those substrates that were reactive, whereas octanucleotide analogues containing N6-methyladenine at either adenine position, uracil at the second thymine position, or 5-bromocytosine or 5-methylcytosine at the cytosine position were unreactive. The results are discussed in terms of possible effects on interactions between the enzyme and its recognition site during the reaction. An accompanying paper presents the results of a similar study using these oligonucleotides with the EcoRI modification methylase.  相似文献   

16.
The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated at the P1' and P2 positions, resulting in intermediate levels of cleavage. Substitutions at the P3 and P4 positions had no effects on cleavage efficiency in the cell-free assay. Processing at other dibasic sites was studied by using transient expression of a sig2A-5(356) polyprotein. Cleavage at the 2B/3 site was not required for processing at downstream sites. However, increased accumulation of high-molecular-weight viral polyproteins was generally observed for mutations which reduced cleavage efficiency at the 2B/3 site. Several mutations were also tested for their effects on viral replication. Virus was not recovered from substitutions which blocked or substantially reduced cleavage in the cell-free assay, suggesting that efficient cleavage at the 2B/3 site is required for flavivirus replication.  相似文献   

17.
A variety of structural mutations that alter functional properties of regulatory subunit (R) of type I cyclic AMP-dependent protein kinase are available in the cultured S49 mouse lymphoma cell system. Many of these mutations also alter the electrostatic charge of R by about 1 or 2 units. By a novel peptide mapping procedure, a number of these "charge-shift" structural mutations were localized to small regions within the R polypeptide. The procedure employed two-dimensional polyacrylamide gel electrophoresis to separate large overlapping fragments generated from denatured, affinity-purified R by limited digestion with papain. Mutations were mapped to intervals between the endpoints of these fragments. The position of one mutation was confirmed by mapping a new site for cleavage by Staphylococcus aureus V8 protease. Six different Ka mutations, which increase the concentrations of cyclic AMP required for kinase activation, mapped to three clusters in the carboxy-terminal half of R. Second-site mutations that cause phenotypic reversion of a single Ka mutant strain mapped to either side of the original mutation. By using charge-shift mutations for calibration, a map of charge density distribution was constructed for the R polypeptide. This map allowed tentative assignment of mutational lesions to portions of the R amino acid sequence implicated in cyclic AMP binding.  相似文献   

18.
Using a series of decadeoxyribonucleotides containing base analogues as substrates we measured the steady-state kinetic parameters for the reaction catalyzed by RsrI endonuclease and compared the results to those with its isoschizomer EcoRI. The kinetics of RsrI cleavage are affected by each substitution, with the effects being generally more deleterious than with EcoRI, as shown by the greater reduction in the specificity constant kcat/KM. The magnitudes of the effects of several substitutions are consistent with the formation of direct enzyme-nucleobase contacts at the indicated positions. With substrates containing 2-amino-purine or 2,6-diaminopurine at the central adenine or uracil at the outermost thymine in the recognition sequence, cleavage by RsrI was very slow, less than one-tenth the rate of the corresponding EcoRI-catalyzed reaction. The lower tolerance of RsrI endonuclease for functional group changes in its recognition site may reflect differences in the mechanisms of DNA recognition by the two enzymes. Although RsrI and EcoRI endonucleases bind with similar affinities to specific and nonspecific DNA sequences and appear to introduce similar structural distortions in DNA upon binding, the use of substrate analogues reveals significant differences at the level of catalysis in the mechanisms by which these two endonucleases recognize the duplex sequence GAATTC.  相似文献   

19.
DNA methylation is an important cellular mechanism for controlling gene expression. Whereas the mutagenic properties of many DNA adducts, e.g., those arising from polycyclic aromatic hydrocarbons, have been widely studied, little is known about their influence on DNA methylation. We have constructed site-specifically modified 18-mer oligodeoxynucleotide duplexes containing a pair of stereoisomeric adducts derived from a benzo[a]pyrene-derived diol epoxide [(+)- and (-)-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, or B[a]PDE] bound to the exocyclic amino group of guanine. The adducts, either (+)- or (-)-trans-anti-B[a]P-N(2)-dG (G*), positioned either at the 5'-side or the 3'-side deoxyguanosine residue in the recognition sequence of EcoRII restriction-modification enzymes (5'-...CCA/TGG...) were incorporated into 18-mer oligodeoxynucleotide duplexes. The effects of these lesions on complex formation and the catalytic activity of the EcoRII DNA methyltransferase (M.EcoRII) and EcoRII restriction endonuclease (R.EcoRII) were investigated. The M.EcoRII catalyzes the transfer of a methyl group to the C5 position of the 3'-side cytosine of each strand of the recognition sequence, whereas R.EcoRII catalyzes cleavage of both strands. The binding of R.EcoRII to the oligodeoxynucleotide duplexes and the catalytic cleavage were completely abolished when G was positioned at the 3'-side dG position (5'-...CCTGG*...). When G* was at the 5'-side dG position, binding was moderately diminished, but cleavage was completely blocked. In the case of M.EcoRII, binding is diminished by factors of 5-30 but the catalytic activity was either abolished or reduced 4-80-fold when the adducts were located at either position. Somewhat smaller effects were observed with hemimethylated oligodeoxynucleotide duplexes. These findings suggest that epigenetic effects, in addition to genotoxic effects, need to be considered in chemical carcinogenesis initiated by B[a]PDE, since the inhibition of methylation may allow the expression of genes that promote tumor development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号