首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 166 毫秒
1.
青霉素和苯巴比妥钠对小鼠全脑切片积聚~3H-GABA的影响   总被引:1,自引:0,他引:1  
本文应用同位素示踪、脑片离体培育和侧脑室注射的方法,在体外和体内研究了惊厥剂青霉素和抗惊厥剂苯巴比妥钠对小白鼠全脑切片积聚~3H-GABA的影响。结果表明:(1)在含6.70—13.40×10~(-4)mol/L的苄青霉素钾(PG)100μl或19.60—39.20×10~(-4)mol/L的苯巴比妥钠(PhB)50μl的培育液(2ml)中,小鼠全脑切片对~3H-GABA的积聚作用明显降低(P<0.05)。6.70×10~(-4)mol/L的PG100μl和39.20×10~(-4)mol/L的PhB50μl同时注入培育液(2ml)时,脑片对~3H-GABA的积聚比PG单独试验时稍有升高。(2 )小鼠侧脑室注射20μl的 3.35×10~(-2)mol/L的PG可引起强烈的惊厥,脑片上的~3H-GABA积聚减少(P>0.05);脑室内注射10μl的3.88×10~(-2)mol/L的PhB能抗惊厥,也使~3H-GABA在脑片上的积聚减少(P>0.05);脑室内同时注射PG和PhB,使~3H-GABA在脑片上的积聚恢复正常。以上结果提示:青霉素可通过竞争突触后膜和神经末梢上的GABA受体,阻断GA-BA的突触后抑制效应及抑制GABA释放,显示惊厥作用;苯巴比妥钠也可和突触后膜上的GABA受体结合,产生GABA样作用或激活GABA受体,起抗惊厥作用。  相似文献   

2.
水稻原生质体产生细胞团的冰冻保存和冻后再生植株形成   总被引:4,自引:0,他引:4  
水稻(Oryza sativa L.)原生质体产生的细胞团加上10-20%的二甲亚枫(DMSO)和10-20%的蔗糖,置于液氮中保存。冻后细胞生存率达到对照的40-50%。存活的细胞在附加2×10~(-5)mol/l 2,4-D 的Linsmier-Skoog(Ls)固体培养基上再生长,然后将形成的愈伤组织块转到附加10~(-6)mol/l NAA,4×10~(-6)mol/l 激动素和10~(-6)mol/l 2 IP 及8%的蔗糖的 LS培养基上分化出芽并形成植株。  相似文献   

3.
10~(-5)mol/L 6-BA在促进黄瓜子叶细胞扩大生长的同时,也促进了细胞壁酶活性的增加。在 0~16 h和 16~24 h期间,分别以β—1,3-葡聚糖酶的活性增加及过氧化物酶的活性下降最为显著。膨压是细胞扩大生长不可缺少的条件之一,0.4mol/L甘露醇下,子叶细胞的扩大生长和细胞壁酶活性均受到抑制。  相似文献   

4.
本文研究了绿豆子叶线粒体发育过程中腺苷酸能荷(AEC)的变化及其和细胞能量状态的关系。观察到吸胀2小时的绿豆子叶线粒体发育不完全,吸胀12小时线粒体内膜出现明显的内嵴。随着线粒体完整性的增加,H~ -ATPase 的活性明显增大,细胞的 ATP 水平也明显提高,AMP 水平下降,AEC 值剧增,但此时线粒体本身的腺苷酸水平及 AEC 值变化不大。经1×10~(-4)mol/1和5×10~(-4)mol/1 DNP 处理的子叶,细胞中 ATP 含量大大降低,AMP 增多,AEC 随之下降,而线粒体的腺苷酸及 AEC 仍然保持衡定,腺苷酸激酶(AK)的活性不但不受 DNP 的抑制,反比对照增加约50%。线粒体能量状态的维持可能受 AK 的调节。  相似文献   

5.
潘玉贞  王丽华 《生理学报》1992,44(4):326-332
通过埋植套管向大鼠双侧缰核分别注射0.1mol/L CaCl_2 0.5μl,0.06mol/L ACh0.5μl,5.4×10~(-3)mol/L三碘季铵酚0.5μl和14.4×10~(-3)mol/L阿托品0.5μl后观察到,Ca~(2 )降低基础痛阈并拮抗电针镇痛效应;ACh拮抗电针镇痛;Ca~(2 )拮抗电针镇痛的作用可被胆碱能N受体阻断剂三碘季铵酚完全翻转。提示缰核内的Ca~(2 )可能通过ACh实现其拮抗电针镇痛的效应。  相似文献   

6.
行为实验已多次证明,脑室注射血管紧张素Ⅱ(AⅡ)可以对抗吗啡的镇痛作用,但机制不明。吗啡阻止神经末梢钙摄取被认为是其镇痛的机理之一,因此本工作研究了AⅡ和吗啡对大鼠脑突触小体~(45)Ca摄取的作用及相互关系。结果表明,吗啡(10~(-8)—10~(-6)mol/L)对~(45)Ca摄取有明显的抑制作用,10~(-7)mol/L时抑制41%(P<0.001),该效应可被吗啡受体阻断剂纳洛酮(10~(-6)mol/L)完全翻转。与吗啡的作用相反,AⅡ(10~(-8)—110~(-6)mol/L)可促进突触小体对~(45)Ca的摄取,10~(-7)mol/L时增加75%(P<0.001),该效应可被AⅡ受体阻断剂Saralasin(10~(-6)mol/L)完全翻转。将不同剂量的AⅡ(10~(-8)—10~(-6)mol/L)和10~(-8)mol/L吗啡与突触小体共同孵育,则吗啡抑制~(45)Ca摄取的作用被完全翻转。以上结果表明,AⅡ促进脑突触小体Ca~(2 )摄取,对抗了吗啡抑制Ca~(2 )摄取的作用,可能是AⅡ抗吗啡镇痛的机制之一。  相似文献   

7.
GABA对大鼠下丘脑正中隆起LHRH释放调节的研究   总被引:2,自引:0,他引:2  
罗履广  朱兴族 《生理学报》1991,43(3):205-212
本研究应用大鼠下丘脑正中隆起(ME),观察 γ-氨基丁酸(GABA)和去甲肾上腺素(NA)对下丘脑促黄体生成激素释放激素(LHRH)神经元末梢分泌作用的影响。结果发现:GABA(10~(-6)mol/L)可显著促进 ME 的 LHRH 和 NA 的释放,即 LHRH 释放量由27.3±2.5pg/100ul 增加至150.4±27.9pg/100μl;NA 释放量由50.9±4.2pg/100μl 增加至105.5±19.1pg/100ul,两者与对照组相比有显著差异(P<0.01)。GABA 这些作用可被受体拮抗剂荷包牡丹碱(Bicuculline)所翻转。当荷包牡丹碱和 GABA(10~(-6)mol/L)同时存在于 ME 的培灌液中,LHRH 的分泌量下降为18.2±1.9pg/100μl,而 NA 分泌量下降为43.9±3.4pg/100μl。在内源性 NA 被利血平耗竭时,LHRH 的释放量仅增加26.5%,而 GABA 能使正常大鼠 LHRH 释放量增加451.9%。本研究提示:GABA 可促进下丘脑 ME 释放 LHRH,这一作用可能通过 NA 中介。  相似文献   

8.
孙凤艳  张安中 《生理学报》1989,41(4):354-360
用离体血管电场刺激收缩模型观察到强啡肽明显抑制电场刺激引起的兔耳中心动脉及兔肠系膜上动脉的收缩效应,且呈剂量反应关系,而对股动脉的电场刺激收缩反应无明显影响,强啡肽抑制血管收缩达50%时的用量(IC_(50)值)分别为8.5±1.2×10~(-6)mol/L、5.02±1.3×10~(-7)mol/L及>10~(-6)mol/L。 用药物分析法看到,酚妥拉明(10~(-6)mol/L)可取消电场刺激及去甲肾上腺素引起的血管收缩作用,而强啡肽仅抑制电场刺激致血管收缩作用。 用HPLC法测定孵育液中去甲肾上腺素的含量变化时看到,应用强啡肽(5×10~(-7)mol/L)后孵育液中去甲肾上腺素的含量从对照组的340.56±73.13pg/ml下降至67.91±10.26pg/ml,两组差别有极显著意义(P<0.01)。纳洛酮(10~(-6)mol/L)可完全拮抗强啡肽的这一抑制效应。 以上结果提示强啡肽可能通过抑制交感神经末梢释放去甲肾上腺素,从而产生抑制血管的收缩作用。  相似文献   

9.
较高比值的内源ABA/GA_S有利于黄瓜黄化子叶和石刁柏茎不定根的发生。外源ABA具有增加组织内ABA含量并降低GA_S含量而促进生根的作用,而外源GA_S则与ABA效果相反。外源GA_S浓度为10~(-5)mol/L时,外源ABA对黄瓜子叶生根的诱导被明显抑制。子叶内GA_S含量较高的黄瓜1101品系其父本发根能力明显低于母本。ABA与GA_3对不定根发生的调控作用在黄瓜子叶离体培养的第一天最明显。  相似文献   

10.
探讨生物肽P物质(substance P,SP)对NK92-MI细胞迁移力和细胞表面趋化因子受体表达的影响,能更好地解释SP调控NK细胞迁移的作用机制,为NK细胞的功能研究及潜在的免疫疗法提供补充依据。Transwell法检测SP对NK92-MI细胞迁移能力的影响及SP对趋化因子CCL21和CXCL12对NK92-MI细胞趋化作用的影响;Real-time PCR检测SP对CCR7和CXCR4 mRNA表达水平的影响;流式细胞术检测SP对CCR7和CXCR4膜表达水平的影响。结果显示:①SP促进NK92-MI细胞的迁移,是在低浓度范围(10~(-12)~10~(-10)mol/L)随SP浓度增加,促进作用逐渐增强,高浓度范围(10~(-8)~10~(-6) mol/L)随SP浓度增加,促进作用又有所减弱,SP浓度在10~(-10) mol/L时,趋化指数达峰值;SP增强趋化因子CCL21和CXCL12对NK92-MI细胞的趋化作用,这种增强作用在10~(-10) mol/L浓度最显著。②SP在10~(-12)~10~(-6) mol/L浓度范围内均能明显促进CCR7 mRNA的表达,且CCR7 mRNA表达水平随着SP浓度增加而增高;SP在10~(-10 )~10~(-6 ) mol/L浓度范围内能明显促进CXCR4 mRNA的表达。③CCR7的膜表达水平随着SP浓度的增加具有逐渐增高的趋势,在10~(-8) mol/L和10~(-6) mol/L浓度组,CCR7的表达有明显增加;而CXCR4的膜表达则随SP浓度的增加,具有先增高后回降的趋势,在10~(-10) mol/L和10~(-8) mol/L浓度组,CXCR4的表达有明显增加。SP能直接促进NK92-MI细胞的迁移,说明SP对NK细胞具有直接趋化作用;SP通过上调趋化因子受体CCR7和CXCR4的表达水平,协同趋化因子,间接发挥对NK-92MI细胞的趋化作用。  相似文献   

11.
In the cucumber seedlings pretreated with ABA under light and dark or additional photosynthetic inhibitor (DCMU) before chilling, the effect and the regulative role of ABA on the chilling resistance of cucumber seedlings were investigated. After the excised cotyledonary discs were floated on 10-6 mol/l ABA solution for 24 h and the seedlings were sprayed by 10-4 mol/1 ABA in light, it has been found that ABA has an effect of the protection against low temperature injury in cucumber seedlings. The results showed that the leakage of electrolytes in cucumber cotyledory discs was decreased. The content of glutathione and the accumulation of MDA content in cotyledon of cucumber seedlings were decreased, and decline of the photosynthesis of the leaves or the quenching of chlorophyll fluorescence were slowed, thus the rate of survival in cucumber seedlings was raised. The effect of these regulation was able to be limited by dark or DCMU.  相似文献   

12.
Pretreatment by darkness increased chilling (4°C) injuryin whole cotton (Gossypium hirsutum L.) seedlings and isolatedcotyledonary tissue. Addition of sucrose in the dark periodprevented the effect of darkness. Application of the photosyntheticinhibitor DCMU in light simulated the effect of darkness. ABA(10–5 M) decreased chilling injury when applied in lightas a pretreatment before the onset of chilling. The same pretreatmentin darkness was almost ineffective, unless sucrose was added.ABA applied in light together with DCMU was ineffective in decreasingchilling injury. Lower light intensity resulted in increasedchilling injury and a decreased effect of ABA in the preventionof chilling injury. The antimicrotubular drug colchicine increased the chillinginjury. Pretreatment with ABA in light decreased the chillingand colchicine injury while the same pretreatment in darknesswas ineffective. These results suggest that a deficiency of a photosyntheticproduct increases the chilling sensitivity of the tissue. ABAapparently increases chilling resistance through a metabolicprocess which depends on photosynthetic activity. 3 Incumbent of the Seagram Chair in Plant Sciences (Received November 20, 1980; Accepted January 31, 1981)  相似文献   

13.
刘鸿先  王以柔  李晓萍  郭俊彦   《广西植物》1993,13(2):174-179
本试验以黄瓜和水稻幼苗为材料,研究了光照和黑暗条件下低温对植物叶绿素蛋白质复合体的影响。SDS—PAGE电泳结果表明:5℃及12h 280μmol m~(-2)S~(-1)处理2d,Chl-蛋白质复合体的降解明显大于5℃暗低温处理;低温与光照对P700-CPa_1的影响大于LHCP。叶绿素荧光测定表明;5℃及12h 280μmol m~(-2)s~(-1)的处理对PSⅡ的影响亦大于暗低温处理。由此认为:低温与光对植物叶绿体的PSⅠ和PSⅡ都有明显的影响,其机理可能与常温下高光强引起的光抑制相类似;不同的是低温下中等光强就能引起光抑制。因此,在光照低温下往往加剧植物冷害的发生。  相似文献   

14.
Amelioration of chilling stress by triadimefon in cucumber seedlings   总被引:11,自引:0,他引:11  
Cucumber (Cucumis satvus L.) seeds were imbibed in distilled water (control) and 10 mg l–1 triadimefon (TDM) for 10 h and then grown in a plant growth chamber with a light/dark temperature of 28/20 °C and a photoperiod of 14 h with a light intensity of 60 µmol m–2 s–1. 14-day-old seedlings were exposed to chilling stress with a light/dark temperature of 6/3 °C for 4 d. TDM improved the growth rate of cucumber seedling subjected to chilling stress and increased photosynthetic pigments contents and relative water content compared with the control at the end of chilling stress. Chilling stress decreased protein content and the activities of SOD, CAT and POD, but it increased proline, H2O2 and MDA accumulation, and relative electrical conductivity. TDM ameliorated the injury caused by chilling stress by preventing decreases in protein content and the activities of SOD, CAT and POD and by inhibiting increases in proline, H2O2 and MDA contents, and relative electrical conductivity, which suggested that TDM ameliorated the negative effect of chilling stress.  相似文献   

15.
When melon seedlings (Cucumis melo L. Ximiya No. 1) were cultured in a growth chamber with about 150 micro mol m(-2) s(-1) photon flux density, the leaf photosynthetic ability reduced dramatically as leaf position decreased from the top. The application of 5-aminolevulinic acid (ALA) solutions significantly increased the net photosynthetic rate (P(n)) as well as apparent quantum yield (AQY), carboxylation efficiency (CE) and stomata conductance (G(s)). After irrigation with 10 ml of ALA solution (10 mg l(-1) or 100 mg l(-1)) per container filled with approximately 250 g clean sand for 3 days, the leaf P(n) was about 40-200% higher than that of controls, and AQY, CE and G(s) increased 21-271%, 55-210% and 60-335%, respectively. Furthermore, ALA treatments increased leaf chlorophyll content and soluble sugar levels, as well as the rate of dark respiration, but decreased the rate of respiration under light. On the other hand, after melon seedlings that had been cultured in the chamber suffered chilling at 8 degrees C for 4 h and then recovered at 25-30 degrees C for 2 and 20 h, the P(n) of the water-irrigated plants was only 12-18% and 37-47%, respectively, compared with the initial P(n) before chilling treatment. If the seedlings underwent the same treatment but with ALA (10 mg l(-1)), the respective P(n) was 22-38% and 76-101%, compared with that of the control before chilling stress. If chilling was prolonged for 6 h, the ALA-pre-treated plants only showed a few symptoms in the leaf margins whereas all water-irrigated plants died, which suggested that ALA presumably promoted chilling tolerance of the plants under low light.  相似文献   

16.
When cucumber seedlings (Cucumis sativus L. cv. Aonagajibai) were treated with aqueous solution of BA (10–5mol/1 and 10–8mol/l) by spraying application, the amount of NPR protein was increased and the NPR activity was promoted. The contents of protochlorophyl, lide (Pchlide) and NADPH as the substrates of the enzyme reaction, were also increased remarkably. 2. The amount of Pchlide and NPR protein decreased rapidly when treated with red light. BA plays the role in the protection against the damage of enzyme activity by light and then decreasing the destruction of NPR protein. BA increased the content of Pchlide and NADPH, so the NPR activity was maintained at a higher level although in light condition. 3. Because that BA increased the content of NPR protein and the reaction substrate such as NADPH and Pchlide, the NPR activity was promoted. So, the rate of chlorophyll biosynthesis was rapid, and the content of chlorophyll increased. The leaf turns to dark green.  相似文献   

17.
Tomato seedlings (Lycopersicon esculentum Mill.) chilled starting at different times during the light/dark cycle were most chilling-sensitive at the end of the dark period (AI King, MS Reid, BD Patterson 1982 Plant Physiol 70: 211-214). Low-temperature tolerance was regained with as little as 10 minutes of light exposure. Low light intensities were less effective than high light intensities in reducing sensitivity, and the length of exposure to light directly influenced sensitivity. Seedlings kept at low night temperatures prior to chilling were also less injured following chilling. Light also restored chilling tolerance to seedlings whose roots were removed. Supplying cut shoots with sucrose, glucose, or fructose reduced chilling sensitivity and largely eliminated the diurnal difference in sensitivity. Endogenous carbohydrate content was correlated with changes in chilling sensitivity; starch and sugar content fell markedly during the dark period. Increased concentrations of sugars were detected 15 minutes after the start of the light period. This evidence all suggests that changes in chilling sensitivity over the diurnal period are regulated by the light cycle. It also suggests that increased sensitivity at the end of the dark period could be due to carbohydrate depletion, and that chilling tolerance following light exposure is likely due to carbohydrate accumulation or closely related events.  相似文献   

18.
Seedlings and coppice shoots of Betula pubescens Ehrh. were grown under controlled conditions designed to simulate the annual growth cycle, and a water stress was introduced during the short day (SD). Alleviation of hud dormancy after increasing periods at chilling temperatures was tested under long day (LD) conditions. Abscisic acid (ABA) was analysed in leaf and bud samples by gas chromatography-mass spectrometry using [2H4]ABA as the internal standard. Elongation growth of coppice shoots was faster than that of seedlings under both LD and SD conditions, while the final growth cessation occurred in a similar manner and was not affected by water stress, which significantly reduced growth rate in both plant types. Bud dormancy gradually decreased with increasing length of chilling, starting from the basal parts of the plant axis. Water stress did not retard hudhurst. but rather improved it in the chilled coppice shoots and in the non-chilled and partially chilled seedlings. Water content of buds was higher in coppice shoots than in seedlings, but after exposure to SD. it gradually decreased to 45% in both plant types and was not affected by water stress or chilling. The ABA level in both leaves and buds increased during SD treatment and was" enhanced by water stress. No clear differences in bud ABA level were found between the seedlings and coppice shoots under SD conditions, although coppice shoots had less ABA during the preceding LD conditions. There was, in general, no clear effect of chilling on bud ABA level. Budbursl in chilled, single-node cuttings was inhibited by external ABA treatment, which raised the internal ABA levels 10 to 150 times above normal. The observed correlation between ABA level and water content in buds during induction of dormancy under SD and water stress conditions indicates a possible role for ABA in the regulation of dormancy.  相似文献   

19.
Garber MP 《Plant physiology》1977,59(5):981-985
The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. “Marketer”) and spinach (Spinacia oleracea L. “Bloomsdale”) were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号