首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A relatively large population of murine peritoneal exudate macrophages induced with viable BCG or heat-killed Corynebacterium parvum was stained by the antiserum prepared against purified gangliotetraosyl ceramide (asialo GM1), while only a small population of peritoneal resident macrophages or peritoneal exudate macrophages induced with proteose peptone was stained. The cytotoxicity assay of those macrophages with anti-asialo GM1 plus complement supported these results. Peritoneal macrophages induced with BCG or C. parvum showed strong cytotoxicity for EL4 cells in vitro, while resident or peptone-induced peritoneal macrophages showed no cytotoxicity. BCG- or C. parvum-induced peritoneal cells contained both NK cells and cytotoxic macrophages, and either in vivo or in vitro pretreatment of the cells with anti-asialo GM1 and complement abolished the activities of both types of cells. Peptone-induced peritoneal macrophages incubated with lymphokines (LK) or lipopolysaccharide (LPS) were cytotoxic for EL4 cells and contained an increased number of cells stained by anti-asialo GM1. The cytotoxicity of these in vitro activated macrophages was reduced by treatment with anti-asialo GM1 plus complement. When peptone-induced peritoneal macrophages were incubated with LK, the number of cells stained by anti-Ia antiserum increased, but the number did not increase when the macrophages were incubated with LPS. Pretreatment of peptone-induced macrophages with anti-asialo GM1 plus complement did not affect the ability of the macrophages to be activated by LK. These results taken together strongly suggest that the antigen (s) reactive with anti-asialo GM1 is expressed on the cell surface of cytotoxic peritoneal macrophages in mice.  相似文献   

2.
The gangliosides GM2, GD2, and GD3 are differentiation antigens largely restricted to cells of neuroectodermal origin. They are expressed on most melanomas, astrocytomas, and neuroblastomas and have been shown to function as effective targets for monoclonal antibodies. In previous studies, we have immunized melanoma patients and mice with a series of melanoma cell vaccines containing these antigens, but have observed only occasional antibody responses. We report here the results of experiments in which an irradiated whole cell vaccine shown previously to be optimal was compared with a series of vaccines containing purified GM2. Mice were pretreated with low dose cyclophosphamide (Cy), or not, and were immunized twice with syngeneic melanoma cells (JB-RH) known to contain 60 micrograms of GM2 or with vaccines containing 50 micrograms of purified GM2. Serum was obtained at regular intervals and was tested by immune adherence, complement dependent cytotoxicity, and protein A assays on the JB-RH cell line. The whole cell vaccine, GM2 alone, GM2 incorporated into complete Freund's adjuvant, and GM2 attached to E. coli were all minimally immunogenic. GM2 attached to Salmonella minnesota or BCG, and GM2 attached to certain liposome preparations containing monophosphoryl lipid A, were found to be moderately immunogenic. GM2 attached to the R595 mutant of Salmonella minnesota was found to be significantly more immunogenic. Pretreatment with Cy significantly increased the immunogenicity of this vaccine. The specificities of selected sera were tested in inhibition assays and were limited to GM2. Antibodies produced after immunization were generally exclusively IgM and mediated potent complement-dependent cytotoxicity on JB-RH cells. These results identify R595 as the most effective adjuvant tested for augmenting the immunogenicity of GM2 and show that with regard to antibody production, purified tumor antigen presented optimally can be more immunogenic than optimally presented whole tumor cells containing the same amount of antigen.  相似文献   

3.
To investigate the biological characterization and antitumor activitites of GM-CSF gene-transfected dendritic cells, the splenic dendritic cells were infected with GM-CSF recombinant replication-deficient adenoviruses in vitro . Their enhanced expression of B7 was demonstrated by FACS analysis, and more potent stimulatory activity was confirmed by allogeneic MLR. Immunization of dendritic cells pulsed with irradiated B16 melanoma cells induced sig-nificant CTL and enabled host to resist the challenge of wild-type B16 cells. When they were transfected with GM-CSF gene subsequently, the induced CTL activity was higher, and the produced protection against B16 cell challenge and therapeutic effect on the mice with preestablished pulmonary melastases more effective. These data suggest that the dendritic cells pulsed with tumor antigen then transfected with GM-CSF gene can be used as an effective vaccine in tumor immunotherapy.  相似文献   

4.
We previously reported a dramatically increased number of macrophages in tumor-bearing mice. In this study, we investigated the involvement of CSF in that phenomenon. CSF-1 responding cells as macrophages precursors increased significantly in number in the spleens of tumor-bearing mice as compared with those in normal mice. Splenic cells and sera from the tumor-bearing mice respectively expressed CSF-1 in mRNA and serum protein levels, but failed to express the other CSF (granulocyte-macrophage-CSF or IL-3). Nonadherent splenic mononuclear cells (< 0.5% macrophages) from normal mice proliferated and differentiated into mature macrophages in culture within 7 days with recombinant mouse CSF-1 (rCSF-1). Both macrophages harvested from tumor-bearing mice and those activated in vitro with rCSF-1 expressed mostly Mac-1, -2 (and -3) Ag, showed yeast phagocytosis, produced IL-1 but not IL-2 or IL-3, and displayed potent cytotoxicity against NK cell resistant Meth-A tumor cells. These macrophages also expressed lipocortin I mRNA and secreted lipocortin I protein, and suppressed mitogenic responses of splenic lymphocytes. rCSF-1-activated macrophages derived from nonadherent splenic cells expressed both CSF-1 and CSF-1 receptor (c-fms) mRNA. Administration of rCSF-1 into normal mice induced hemopoietic and immunologic alternations similar to those observed in tumor-bearing mice. These results suggest that CSF-1 is involved in the dramatic increase of macrophages in tumor-bearing mice, possibly through an autocrine or paracrine loop.  相似文献   

5.
The enhancement of antitumor activities of the tumoricidal soluble factor (SF) from a streptococcal preparation (OK-432)-activated macrophages by the pretreatment with a protein-bound polysaccharide (PSK) was investigated in tumor-bearing mice.Two-step stimulations with OK-432 atin vivo priming andin vitro eliciting were required for the production of the tumoricidal SF by macrophages, and the tumoricidal activity of the SF apparently correlated with the uptake of OK-432 by macrophages at priming phase.Tumoricidal activity of the SF from OK-432-activated macrophages in proteose-peptone (P-P)-pretreated mice significantly decreased with the development of the tumor, whereas in PSK-pretreated mice did not. Pretreatment of tumor-bearing mice with PSK saved a decrease in the macrophages carrying Iak or asialo GM1 antigens and an increase in wheat germ agglutinin (WGA) receptors. Furthermore, the uptake of OK-432 by macrophages at priming phase was enhanced. The tumoricidal activity of the SF from OK-432-activated macrophages was augmented.Thus, PSK may restore the depressed functions of macrophages, and the combination therapy with PSK and OK-432 may be effective to enhance the production of tumoricidal SF in tumor-bearing mice.  相似文献   

6.
The objective of our study was to determine granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) activity in the brain following GM‐CSF induction. We injected recombinant mouse GM‐CSF into the brains of 8‐month‐old C57BL6 mice via intracerebroventricular injections and studied the activities of microglia, astrocytes, and neurons. We also sought to determine whether an anti‐GM‐CSF antibody could suppress endogenous microglial activity in the C57BL6 mice and could also suppress microglial activity induced by the recombinant mouse GM‐CSF in another group of C57BL6 mice. Using quantitative real‐time RT‐PCR, we assessed microglial, astrocytic, and neuronal activity by measuring mRNA expression of pro‐inflammatory cytokines, GFAP, and the neuronal marker NeuN in the cerebral cortex tissues from C57BL6 mice. We performed immunoblotting and immunohistochemistry of activated microglia in different regions of the brains from control (phosphate‐buffered saline‐injected C57BL6 mice) and experimental mice (recombinant GM‐CSF‐injected C57BL6 mice, GM‐CSF antibody‐injected C57BL6 mice, and recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody‐injected C57BL6 mice). We found increased mRNA expression of CD40 (9.75‐fold), tumor necrosis factor‐alpha (2.1‐fold), CD45 (1.73‐fold), and CD11c (1.70‐fold) in the cerebral cortex of C57BL6 mice that were induced with recombinant GM‐CSF, compared with control mice. Further, the anti‐GM‐CSF antibody suppressed microglia in mice that were induced with recombinant GM‐CSF. Our immunoblotting and immunohistochemistry findings of GM‐CSF‐associated cytokines in C57BL6 mice induced with recombinant GM‐CSF, in C57BL6 mice injected with the anti‐GM‐CSF antibody, and in C57BL6 mice injected with recombinant mouse GM‐CSF plus anti‐GM‐CSF antibody concurred with our real‐time RT‐PCR findings. These findings suggest that GM‐CSF is critical for microglial activation and that anti‐GM‐CSF antibody suppresses microglial activity in the CNS. The findings from this study may have implications for anti‐inflammatory effects of Alzheimer’s disease and experimental autoimmune encephalomyelitis mice (a multiple sclerosis mouse model).  相似文献   

7.
Alveolar macrophages (AMs) are specialized tissue‐resident macrophages that orchestrate the immune responses to inhaled pathogens and maintain organ homeostasis of the lung. Dysregulation of AMs is associated with allergic inflammation and asthma. Here, we examined the role of a phosphoinositide kinase PIKfyve in AM development and function. Mice with conditionally deleted PIKfyve in macrophages have altered AM populations. PIKfyve deficiency results in a loss of AKT activation in response to GM‐CSF, a cytokine critical for AM development. Upon exposure to house dust mite extract, mutant mice display severe lung inflammation and allergic asthma accompanied by infiltration of eosinophils and lymphoid cells. Moreover, they have defects in production of retinoic acid and fail to support incorporation of Foxp3+ Treg cells in the lung, resulting in exacerbation of lung inflammation. Thus, PIKfyve plays a role in preventing excessive lung inflammation through regulating AM function.  相似文献   

8.
Chefalo P  Pan Y  Nagy N  Guo Z  Harding CV 《Biochemistry》2006,45(11):3733-3739
Abnormal carbohydrates expressed on tumor cells, which are termed tumor-associated carbohydrate antigens (TACAs), are potential targets for the development of cancer vaccines. However, immune tolerance to TACAs has severely hindered progress in this area. To overcome this problem, we have developed a novel immunotherapeutic strategy based on synthetic cancer vaccines and metabolic engineering of TACAs on tumor cells. One critical step of this new strategy is metabolic engineering of cancer, namely, to induce expression of an artificial form of a TACA by supplying tumors with an artificial monosaccharide precursor. To identify the proper precursor for this application, N-propionyl, N-butanoyl, N-isobutanoyl, and N-phenylacetyl derivatives of d-mannosamine were synthesized, and their efficiency as biosynthetic precursors in modifying sialic acid and inducing expression of modified forms of GM3 antigen on tumor cells was investigated. For this purpose, tumor cells were incubated with different N-acyl-d-mannosamines, and modified forms of GM3 expressed on tumor cells were analyzed by flow cytometry using antigen-specific antisera. N-Phenylacetyl-d-mannosamine was efficiently incorporated in a time- and dose-dependent manner to bioengineer GM3 expression by several tumor cell lines, including K562, SKMEL-28, and B16-F0. Moreover, these tumor cell lines also exhibited ManPAc-dependent sensitivity to cytotoxicity mediated by anti-PAcGM3 immune serum and complement. These results provide an important validation for this novel therapeutic strategy. Because N-phenylacetyl GM3-protein conjugates are particularly immunogenic, the combination of an N-phenylacetyl GM3 conjugate vaccine with systemic N-phenylacetyl-d-mannosamine treatment is a promising immunotherapy for future development and application to melanoma and other GM3-bearing tumors.  相似文献   

9.
We hypothesized that pulmonary granulocyte-macrophage colony-stimulating factor (GM-CSF) is critically involved in determining the functional capabilities of alveolar macrophages (AM) for host defense. To test this hypothesis, cells were collected by lung lavage from GM-CSF mutant mice [GM(-/-)] and C57BL/6 wild-type mice. GM(-/-) mice yielded almost 4-fold more AM than wild-type mice. The percentage of cells positive for the beta(2)-integrins CD11a and CD11c was reduced significantly in GM(-/-) AM compared with wild-type cells, whereas expression of CD11b was similar in the two groups. The phagocytic activity of GM(-/-) AM for FITC-labeled microspheres was impaired significantly compared with that of wild-type AM both in vitro and in vivo (after intratracheal inoculation with FITC-labeled beads). Stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and leukotrienes by AM from the GM(-/-) mice was greatly reduced compared with wild-type AM, whereas secretion of monocyte chemoattractant protein-1 was increased. Transgenic expression of GM-CSF exclusively in the lungs of GM(-/-) mice resulted in AM with normal or supranormal expression of CD11a and CD11c, phagocytic activity, and TNF-alpha secretion. Thus, in the absence of GM-CSF, AM functional capabilities for host defense were significantly impaired but were restored by lung-specific expression of GM-CSF.  相似文献   

10.
Helicobacter species are common laboratory pathogens which induce intestinal inflammation and disease in susceptible mice. Since in vitro studies indicate that Helicobacter products activate macrophages, we hypothesized that in vivo Helicobacter infection regulates the inflammatory response of intestinal muscularis macrophages from C57Bl/6 mice. Helicobacter hepaticus infection increased surface expression of macrophage markers F4/80, CD11b and MHC-II within whole intestinal muscle mounts. However, constitutive cytokine and chemokine production by macrophages isolated from infected mice significantly decreased compared to macrophages from uninfected mice despite no detectable bacterial products in the cultures. In addition, muscularis macrophages from infected mice up-regulated FIZZ-1 and SK-1 gene expression, suggesting the macrophages had an anti-inflammatory phenotype. Corresponding with increased anti-inflammatory gene expression, macrophages from infected mice were more phagocytic but did not produce cytokines after stimulation with LPS and IFN-γ or immune complexes and IL-4. Therefore, the presence of Helicobacter infection matures intestinal muscularis macrophages, modulating the constitutive macrophage response to become more anti-inflammatory and resistant to secondary stimulation.  相似文献   

11.
Tumor-associated macrophages (TAMs) have been implicated in promoting tumor growth and development. Here we present evidence that demonstrates that co-inoculation of male athymic nude mice with PC-3 prostate cancer cells and U937 promonocytic cells enhances tumor growth and increases tumor angiogenesis. Male athymic nude mice were co-inoculated with PC-3 and U937 cells (control or IL-4 stimulated) and tumor growth was monitored over time. Immunohistochemical analysis of tumor specimens was performed for proliferation markers (e.g., Ki67) and the effects of IL-4 stimulation on U937 cells were analyzed for chemokine expression. The presence of U937 cells increased the rate of tumor growth in vivo and stimulated increased microvascular density within the tumor bed. Stimulation of U937 cells with IL-4 resulted in a significant increase in several pro-angiogenic and pro-tumor chemokines (e.g., CCL2). Co-inoculation increases prostate cancer growth via upregulation of chemokines that induce angiogenesis within the tumor.  相似文献   

12.
The aim of this study was to investigate the effect of heat shock protein-70 (HSP-70) on splenocyte proliferation and nitric oxide (NO) production in the BALB/c mice fibrosarcoma tumor model. To do so, HSP-70 was induced in the lysate of heat-shocked tumor cells and WEHI-164 cells (mouse fibrosarcoma cell line) were injected subcutaneously into the right flank of inbred BALB/c mice to establish a tumor model. Three animal bearing tumor groups were applied: the test group; vaccinated with HSP-70 enriched tumor lysate; control group I, vaccinated with tumor lysate only; and control group II, which received PBS. Using immunoblot analysis, an increase of HSP-70 expression was detected in the lysate of heat-shocked cells in comparison with non-heat-shocked cells. The effect of the test lysate on NO production was measured both in vitro and in vivo in the peritoneal macrophages and splenocytes of tumor bearing mice, respectively. The result showed a significant increase in NO production both in vitro by peritoneal macrophages and in vivo after immunization with HSP-70 enriched tumor lysate. In addition, tumor growth was significantly postponed and the proliferation of splenocytes was increased in the test group. Our results indicate that the lysate of heat-shocked tumor cells was more potent than that of non-heat-shocked tumor cells in inducing anti-tumor immunity. Since production of NO by HSP-activated antigen presenting cells (APCs) is likely to affect innate immunity and tumor growth, the probable mechanism of postponing tumor growth would be NO production by innate immune cells. These findings provide a useful therapeutic model for developing novel approaches to cancer treatments.  相似文献   

13.
Macrophages are critical players in the innate immune response to infectious challenge or injury, initiating the innate immune response and directing the acquired immune response. Macrophage dysfunction can lead to an inability to mount an appropriate immune response and as such, has been implicated in many disease processes, including inflammatory bowel diseases. Macrophages display polarized phenotypes that are broadly divided into two categories. Classically activated macrophages, activated by stimulation with IFNγ or LPS, play an essential role in response to bacterial challenge whereas alternatively activated macrophages, activated by IL-4 or IL-13, participate in debris scavenging and tissue remodeling and have been implicated in the resolution phase of inflammation. During an inflammatory response in vivo, macrophages are found amid a complex mixture of infiltrating immune cells and may participate by exacerbating or resolving inflammation. To define the role of macrophages in situ in a whole animal model, it is necessary to examine the effect of depleting macrophages from the complex environment. To ask questions about the role of macrophage phenotype in situ, phenotypically defined polarized macrophages can be derived ex vivo, from bone marrow aspirates and added back to mice, with or without prior depletion of macrophages. In the protocol presented here clodronate-containing liposomes, versus PBS injected controls, were used to deplete colonic macrophages during dextran sodium sulfate (DSS)-induced colitis in mice. In addition, polarized macrophages were derived ex vivo and transferred to mice by intravenous injection. A caveat to this approach is that clodronate-containing liposomes deplete all professional phagocytes, including both dendritic cells and macrophages so to ensure the effect observed by depletion is macrophage-specific, reconstitution of phenotype by adoptive transfer of macrophages is necessary. Systemic macrophage depletion in mice can also be achieved by backcrossing mice onto a CD11b-DTR background, which is an excellent complementary approach. The advantage of clodronate-containing liposome-mediated depletion is that it does not require the time and expense involved in backcrossing mice and it can be used in mice regardless of the background of the mice (C57BL/6, BALB/c, or mixed background).  相似文献   

14.
Successful gene therapy largely depends on the selective introduction of therapeutic genes into the appropriate target cancer cells. One of the most effective and promising approaches for targeting tumor tissue during gene delivery is the use of viral vectors, which allow for high efficiency gene delivery. However, the use of viral vectors is not without risks and safety concerns, such as toxicities, a host immune response towards the viral antigens or potential viral recombination into the host''s chromosome; these risks limit the clinical application of viral vectors. The Sleeping Beauty (SB) transposon-based system is an attractive, non-viral alternative to viral delivery systems. SB may be less immunogenic than the viral vector system due to its lack of viral sequences. The SB-based gene delivery system can stably integrate into the host cell genome to produce the therapeutic gene product over the lifetime of a cell. However, when compared to viral vectors, the non-viral SB-based gene delivery system still has limited therapeutic efficacy due to the lack of long-lasting gene expression potential and tumor cell specific gene transfer ability. These limitations could be overcome by modifying the SB system through the introduction of the hTERT promoter and the SV40 enhancer. In this study, a modified SB delivery system, under control of the hTERT promoter in conjunction with the SV40 enhancer, was able to successfully transfer the suicide gene (HSV-TK) into multiple types of cancer cells. The modified SB transfected cancer cells exhibited a significantly increased cancer cell specific death rate. These data suggest that our modified SB-based gene delivery system can be used as a safe and efficient tool for cancer cell specific therapeutic gene transfer and stable long-term expression.  相似文献   

15.
共表达人p53、GM-CSF和B7-1基因的重组腺病毒的构建   总被引:4,自引:0,他引:4  
 为开展肿瘤的复合基因治疗 ,构建以串联方式携带人野生型p53、GM CSF和B7 1基因的重组腺病毒穿梭质粒pBB 1 0 2 .将pBB 1 0 2与腺病毒包装质粒GT40 50共转染 2 93细胞 ,通过细胞内同源重组获得重组腺病毒BB 1 0 2 .在 2 93细胞中扩增病毒 ,并通过氯化铯密度梯度超速离心纯化病毒 ,获得高滴度和高纯度的病毒 .分别经免疫组织化学分析、ELISA和流式细胞分析 ,检测BB 1 0 2介导的人野生型p53、GM CSF和B7 1基因在喉癌细胞Hep 2中的表达 .结果表明 ,BB 1 0 2能够有效地将其所携带的目的基因导入Hep 2细胞并使其在细胞中高效表达 ,表达高峰期为转染后 2~ 4d ,此后随时间递减 ,可持续 1 0d以上 .  相似文献   

16.
In general, pig embryos established by somatic cell nuclear transfer (SCNT) are transferred at the one‐cell stage because of suboptimal embryo culture conditions. Improvements in embryo culture can increase the practical application of late embryo transfer. The goal of this study was to evaluate embryos cultured with granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) in vitro, and to track the in vivo developmental competency of SCNT‐derived blastocysts from these GM‐CSF embryos. The receptor for GM‐CSF was up‐regulated in in vitro‐produced embryos when compared to in vivo‐produced cohorts, but the level decreased when GM‐CSF was present. In vitro fertilized (IVF) embryos, supplemented with GM‐CSF (2 or 10 ng/ml), showed a higher frequency of development to the blastocyst stage compared to controls. The total cell numbers of the blastocysts also increased with supplementation of GM‐CSF. Molecular analysis demonstrates that IVF‐derived blastocysts cultured with GM‐CSF exhibit less apoptotic activity. Similarly, an increase in development to the blastocyst stage and an increase in the average total‐cell number in the blastocysts were observed when SCNT‐derived embryos were cultured with either concentration of GM‐CSF (2 or 10 ng/ml). When SCNT‐derived embryos, cultured with 10 ng/ml GM‐CSF, were transferred into six surrogates at Day 6, five of the surrogates became pregnant and delivered healthy piglets. Our findings suggest that supplementation of GM‐CSF can provide better culture conditions for IVF‐ and SCNT‐derived embryos, and pig SCNT‐derived embryos cultured with GM‐CSF in vitro can successfully produce piglets when transferred into surrogates at the blastocyst stage. Thus, it may be practical to begin performing SCNT‐derived embryo transfer at the blastocyst stage. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
We had demonstrated that the NK cell mediated cytotoxicity of murine spleen cells could be augmented byin vivo priming and subsequentin vitro challenge with a streptococcal preparation OK432, and the cell surface phenotype of induced killer cells was Thy-1+, asialo GM1+, suggesting that the activated cells were of NK lineage (OK-NK cell). We had also clarified that IL-2 played a major role in inducing the OK-NK cells via the production of IFN-. In this study, we examined the effect of adoptive transfer of OK-NK cells on syngeneic tumors in mice. Mice were implanted with SP2 myeloma cells intraperitoneally (i.p.), or C26 colon adenocarcinoma cells subcutaneously to make the models of peritonitis carcinomatosa or solid tumor, and the OK-NK cells were transferred i.p. or intratumorally, adoptively. By the adoptive transfer of OK-NK cells, 92% of mice bearing SP2-tumor had be cured. The tumor growth of C26-solid tumor was inhibited, and the survival rate of mice bearing C26-tumor was significantly increased. The intratumoral remnants of125I-labelled OK-NK cells were 61, 27 and 8% at 4, 12 and 36h after intratumoral transfer, respectively. By multiple transfer of OK-NK cells, the antitumor effect was more effectively augmented than that of a single transfer. Results in this study suggested that OK-NK cells could be useful for the therapy of cancer patients.  相似文献   

18.
Summary We have studied the rather paradoxical phenomenon of the growth of an antigenic tumor in an immunocomponent host. This phenomenon was studied by comparing (a) the lymphocyte reactivity and (b) the macrophage cytotoxicity, during SL2 growth in DBA/2 mice (SL2-bearing mice) and in DBA/2 mice immunized against SL2 tumor cells (SL2-immune mice). Immune mice rejected a challenge of tumor cells. The immune T-lymphocytes rendered macrophages cytotoxic (arming) and were able to transfer tumor resistance to naive animals. Nonimmunized mice did not reject a challenge of SL2 cells. In these tumor-bearing mice various forms of immune reactivity were tested. Lymphocytes with the capacity to arm macrophages could not be found in the lymphoid organs. However, lymphocytes isolated from the tissue directly surrounding the subcutaneous SL2 tumor could arm macrophages in vitro.Shortly after subcutaneous tumor grafting cytotoxic macrophages were found in the peritoneal cavity. In the serum macrophage arming factors were detected that rendered macrophages cytotoxic in vitro. This cytotoxicity of the peritoneal macrophages and the presence of macrophage arming factors in the serum showed a similar biphasic pattern. The first phase of cytotoxicity between day 3 and 8 after tumor grafting was tumor (SL2) specific. The second phase from day 12 and onwards was not tumor specific. During the first 4 days after SL2 grafting the DBA/2 mice expressed a specific concomitant immunity to a second tumor graft. Then 7 or more days after grafting the first SL2 tumor, the concomitant immunity was nonspecific as the growth of a second SL2 tumor graft and a L5178Y (DBA/2) tumor graft were inhibited. In addition, the immune suppressive activity of serum and lymphocytes was tested. Neither serum nor lymphocytes from SL2-bearing mice suppressed the macrophage arming capacity of SL2 immune lymphocytes. Lymphocytes from tumor-bearing mice did not inhibit the capacity of SL2-immune lymphocytes to transfer resistance to naive animals. On the contrary, lymphocytes obtained from SL2-bearing mice 14 days after SL2 grafting transfered tumor resistance in a Winn-type assay. These data suggest that the growth of an antigenic tumor is due to the inability of the immune system to mount an effective antitumor effector cell population during tumor growth, rather than an immune suppression of the antitumor reactivity, as a limited immune reactivity could be detected in tumor-bearing mice, whereas immune suppression could not be detected.  相似文献   

19.
Performance status (PS) frequently improves occurs in cancer patients who have been infused with their own lymphokine‐activated killer T cells (LAK‐T). In the present study, a culture supernatant of LAK‐T (LAK‐T sup) administered to 8‐week‐old rats caused neurogenesis as evidenced by increased 5‐ethynyl‐2′‐deoxyuridine staining of brain tissues. Intravenous injection of granulocyte‐macrophage colony stimulating factor (GM‐CSF), a major cytokine in LAK‐T sup, had a similar effect. Furthermore, LAK‐T sup induced Ca++ increase in rat hippocampal brain slices that was detected in neuronal cells by emission of Fluo‐8 NW at 520 nm. The same effect was observed with an rGM‐CSF solution. GM‐CSF may activate neuronal cells by stimulating the glial cells that surround and attach to them. If so, GM‐CSF and LAK‐T sup may improve the motor neurons of patients with amyotrophic lateral sclerosis. The neurogenerative effect of GM‐CSF in LAK‐T sup may also help improve brain function in aged adults including those with dementia such as Alzheimer's disease.  相似文献   

20.
Summary DBA/2 mice were immunized i.p. against syngeneic SL2 lymphosarcoma cells. At various days after the last immunization peritoneal and spleen lymphocytes were collected. The lymphocyte suspensions were enriched for T-cells by nylon wool filtration.The peritoneal T-cells from immunized mice (a) expressed direct specific antitumor cytotoxicity in vitro, (b) induced macrophage cytotoxicity in vitro, and (c) exerted tumor neutralization measured in a Winn-type assay. Spleen T-cells from these immunized mice (a) expressed no direct specific antitumor cytotoxicity in vitro, (b) only induced moderate macrophage cytotoxicity in vitro, but (c) exerted tumor neutralization in a Winn assay.For effective tumor neutralization in vivo effector target cell ratios of 1000:1 were required. When the effector/target ratio of 1000:1 was maintained but the absolute numbers of effector and target cells were lowered from 106 to 105 lymphocytes and 103 to 102 target cells respectively, no tumor neutralization was obtained.The major effect of the sensitized-transferred T-lymphocytes seemed to be the induction of cytotoxic macrophages in the (naive) recipient mice, as the peritoneal macrophages collected from the recipient mice 7 days after i.p. injection of a mixture of sensitized T-cells and tumor cells were cytotoxic. Purified peritoneal T-lymphocytes collected from these recipient mice were able to induce macrophage cytotoxicity in vitro but expressed no cytotoxic T-cell activity.In conclusion, our results show that in the tumor system used, tumor neutralization after transfer of sensitized lymphocytes is not dependent on the presence of cytotoxic T-lymphocytes. Lymphocytes with the strongest potency to render macrophages cytotoxic (in vitro and in vivo) also induce the best tumor neutralization in vivo, suggesting an important role for host macrophages as antitumor effector cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号