首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氮源对L-苏氨酸发酵的影响   总被引:3,自引:0,他引:3  
以L-苏氨酸生产菌TRFC为供试菌株,研究了氮源对L-苏氨酸发酵的产量和糖酸转化率的影响。首先通过摇瓶实验确定发酵的最佳无机氮源和有机氮源分别为硫酸铵和酵母粉,进一步利用10L罐补料分批发酵确定硫酸铵和酵母粉的最佳用量,继续优化培养条件,采用发酵中后期流加硫酸铵和糖氨混合补料等措施,L-苏氨酸产量得到进一步的提高。在最优发酵条件下,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。  相似文献   

2.
The rate of ethanol production per milligram of cell protein begins to decline in the early stage of batch fermentation before high concentrations of ethanol have accumulated. In yeast extract-peptone medium (20% glucose), this initial decline appears to be related to growth and to result in part from a nutrient deficiency. The addition of yeast extract, peptone, and ashed preparations of these restored the ability of glucose-reconstituted medium (in which cells had been previously grown) to support vigorous growth. Magnesium was identified as the active component. Supplementing fermentations with 0.5 mM magnesium prolonged exponential growth, resulting in increased yeast cell mass. The addition of magnesium also reduced the decline in fermentative activity (micromoles of CO2 evolved per hour per milligram of protein) during the completion of batch fermentations. These two effects reduced the time required for the conversion of 20% glucose into ethanol by 1/3 with no measurable loss in ethanol yield (98% of theoretical maximum yield). It is possible that some of the reported beneficial effects of complex nutrients (soy flour and yeast extract) for ethanol production also result from the correction of a simple inorganic ion deficiency, such as magnesium.  相似文献   

3.
The rate of ethanol production per milligram of cell protein begins to decline in the early stage of batch fermentation before high concentrations of ethanol have accumulated. In yeast extract-peptone medium (20% glucose), this initial decline appears to be related to growth and to result in part from a nutrient deficiency. The addition of yeast extract, peptone, and ashed preparations of these restored the ability of glucose-reconstituted medium (in which cells had been previously grown) to support vigorous growth. Magnesium was identified as the active component. Supplementing fermentations with 0.5 mM magnesium prolonged exponential growth, resulting in increased yeast cell mass. The addition of magnesium also reduced the decline in fermentative activity (micromoles of CO2 evolved per hour per milligram of protein) during the completion of batch fermentations. These two effects reduced the time required for the conversion of 20% glucose into ethanol by 1/3 with no measurable loss in ethanol yield (98% of theoretical maximum yield). It is possible that some of the reported beneficial effects of complex nutrients (soy flour and yeast extract) for ethanol production also result from the correction of a simple inorganic ion deficiency, such as magnesium.  相似文献   

4.
The nutritional requirements of Brettanomyces bruxellensis have been investigated. Batch culture and chemostat pulse techniques were used to identify growth-limiting nutrients. The study included determination of the essential components of the culture medium and quantification of the effects of the components. Among the components tested, ammonium sulfate and yeast extract had a significant effect on glucose consumption, growth, and ethanol production. However, if the ammonium sulfate concentration is above 2 g/L, an inhibitory effect on B. bruxellensis growth is observed. The yeast extract appears to be the most important and significant component for growth. The maximum amount of synthesized biomass is proportional to the concentration of yeast extract added to the culture broth (in the tested range). Magnesium and phosphate ions are probably not essential for B. bruxellensis. These ions appear to be supplied in sufficient amounts by the yeast extract in the culture medium. Brettanomyces bruxellensis appears to have very low nutritional requirements for growth.  相似文献   

5.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

6.
冯杰  冯娜  贾薇  杨焱  张劲松 《菌物学报》2016,35(6):722-733
以沪农灵芝1号为供试菌株,葡萄糖作为碳源,用硫酸铵、氯化铵、鱼粉蛋白胨、胰蛋白胨和酵母粉作为氮源,研究不同种类氮源对灵芝菌丝体液态深层发酵过程的影响。首先,确定了N-10酵母自溶粉作为发酵的氮源,降低了发酵的复杂性和不确定性;其次,考察N-10酵母自溶粉不同浓度对灵芝菌丝体发酵合成灵芝三萜过程中菌丝体的生物量、葡萄糖消耗、灵芝三萜产量等方面的影响,确定了N-10酵母自溶粉的适宜添加浓度。在此基础上,采用响应面中心组合设计,对4因素最佳水平范围进行研究,结果表明,葡萄糖、N-10酵母自溶粉、磷酸二氢钾和七水硫酸镁的含量分别为31.06g/L、2.76g/L、1.77g/L和1.99g/L时,灵芝三萜的理论产量为21.166g/kg干菌丝体,实际发酵产量提高到21.153g/kg干菌丝体。与原工艺相比,新工艺的灵芝三萜产量提高了6.22%。  相似文献   

7.
Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.  相似文献   

8.
Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.  相似文献   

9.
白葡萄酒活性干酵母对不同氮源利用的研究   总被引:1,自引:0,他引:1  
选用5种不同的白葡萄酒活性干酵母,以硫酸铵、氯化铵、硝酸铵、尿素、酵母粉等5种物质为氮源,观察其生长量并称量菌体重,以此分析其对氮源利用情况及不同氮源对酵母生长的影响。研究表明:供试菌系在不同氮源中均能生长。不同氮源对酵母的生长速度和生长量有不同影响;不同酵母菌种对不同氮源的利用也有差异。在以酵母粉为氮源的培养基中生长最好。在实验提供的氮源中,酵母粉为供试菌最优氮源,其次是硫酸铵,氯化铵与硫酸铵基本相当,而硝酸铵最差。8#菌种对各种氮源的利用能力相对较强。17#菌种对各种氮源的利用能力最弱。  相似文献   

10.
Experiments were performed to determine the cause of "acid crash", a phenomenon which occasionally occurs in pH-uncontrolled batch fermentations resulting in premature cessation of ABE (acetone butanol) production. The results indicate that "acid crash" occurs when the concentration of undissociated acids in the broth exceeds 57 - 60 mmol/l. Prevention can be achieved by introducing some limited pH control to minimize the concentration of undissociated acids or by slowing the metabolic rate, and thus the rate of acid production, by, for example, lowering the fermentation temperature. "Acidogenic fermentations", which occur when batch fermentations are performed at pH values close to neutrality, are due to rapid production of acids followed by inhibition of solventogenesis when the total acid concentration reaches 240 - 250 mmol/l. Solventogenesis can be achieved at these pH values by lowering the glucose uptake rate / acid production rate by use of e.g. elevated glucose or lowered yeast extract concentrations in the growth medium.  相似文献   

11.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

12.
Effects of yeast extract, and ammonium sulfate were investigated on the production of L-ornithine by an arginine auxotroph.Brevibacterium ketoglutamicum in flask and batch cultures. Yeast extract as an arginine source and ammonium sulfate as an inorganic nitrogen source had significant effects on L-ornithine, production and cell growth. L-ornithine production was repressed by the excessive addition of arginine. Reversion of auxotrophic cells to the wild type was observed when the initial yeast extract concentration was too low. There existed optimum concentrations of yeast extract and ammonium sulfate for L-ornithine production. The effects of yeast extract and ammonium sulfate concentrations on the Leudeking-Piret model parameters were examined to analyze, the relationship between cell growth and L-ornithine production.  相似文献   

13.
The effect of nitrogen sources including yeast extract, peptone, soybean hydrolyzate and some inorganic nitrogen sources, as well as the nitrogen concentration on the fermentative production of pyruvate by Torulopsis glabrata WSH-IP12 was investigated. The addition of yeast extract greatly inhibited pyruvate accumulation, while peptone was shown to be the most favorable nitrogen source. In flask culture, 15 g l(-1) peptone was needed to consume 80 g l(-1) glucose with 23.4 g l(-1)of pyruvate accumulated. Pyruvate production was markedly dependent on the ratio of carbon to nitrogen (C:N), its production was improved by increasing the concentration of glucose and peptone proportionally and reduced by exclusively increasing the glucose concentration. In a glucose fed-batch culture, cell growth and pyruvate production slowed after 28 h. However, cell growth and pyruvate production recovered after further nitrogen, in the form of peptone and ammonium sulfate, was added to the culture. A final concentration of pyruvate of 54.5 g l(-1) was achieved at 64 h (yield to glucose consumed of 0.471 g g(-l)). By using aqueous ammonia instead of potassium hydroxide for pH control, 57.3 g l(-1) pyruvate with a yield of 0.498 g g(-1) was produced by 55 h. This result further indicates that nitrogen level plays an important role in the production of pyruvate.  相似文献   

14.
Growth and esterase production (activity on p-nitrophenyl caprylate) by the newly isolated Bacillus circulans MAS2 bacterial strain were studied. The growth rate at 50°C was high (0.9 h-1) on LB medium with glucose added. Esterase production followed growth with the majority of activity being intracellular during exponential growth phase. During stationary phase, the esterase activity was released in the culture medium. The strain was able to grow at 35– 55°C with maximum growth rate at 50°C, showing a pattern typical of a moderate thermophile. Growth occurred at pH 6–9 with a maximum at 8, with a similar pattern for the esterase production. Addition of glucose, fructose, sucrose or sodium acetate greatly promoted both growth and esterase production while starch, inulin, tributyrin or glycerol showed no effect. Complex nitrogen sources such as tryptone or yeast extract increased growth and esterase production while mineral sources (ammonium chloride or sulfate), glycine or glutamate showed no effect. An increase of tryptone plus yeast extract and glucose concentrations stimulated growth and esterase production which reached 160 U L−1. Received 17 March 1999/ Accepted in revised form 25 June 1999  相似文献   

15.
In batch fermentations of C. acetobutylicum, with 5 g/L yeast extract and 50mM glucose, the ratio of ammonium to glucose affected solvent production when the pH was left to vary uncontrolled from 4.5 to 3.65. High solvent production was observed for a low ratio. When the pH was controlled at 4.5, only acids were produced for all ratio values. At a low ammonium-to-glucose ratio, solvents were produced when the pH was controlled at 3.7. Acids only were produced for a low ratio value at pH 4.0 or for a high ratio value at pH 3.7. In continuous cultures, mostly acids were produced under glucose limitation, but solvents were produced under nitrogen limitation. It was concluded that the nitrogen availability controls solvent production and that the pH affects the availability of organic nitrogen. Biomass autolysis at the stationary phase of batch cultures was reversibly inhibited at pH values less than 3.8. In batch fermentations, the overall molar growth yields on ATP (Y(ATP)) varied from 5.5 to 9.0 and the transient yields from 5.5 to 15.5. In continuous cultures, the Y(ATP) values varied from 5.5 to 14.7 under glucose limitation, and from 6.1 to 9.3 under nitrogen limitation. The Y(ATP) depended on the ammonium to glucose ratio and the culture pH, but did not show the usual dependence on the specific growth rate in batch cultures. The experiments seem to confirm the hypothesis that solvent production is controlled by the demand and availability of ATP.  相似文献   

16.
The effect of reduced nutritional levels (particularly nitrogen source) for immobilized K. fragilis type yeast were studied using a trickle flow, "differential" plug flow type reactor with cells immobilized by adsorption onto an absorbant packing matrix. Minimizing nutrient levels in a feed stream to an immobilized cell reactor (ICR) might have the benefits of reducing cell growth and clogging problems in the ICR, reducing feed preparation costs, as well as reducing effluent disposal costs. In this study step changes in test feed medium nutrient compositions were introduced to the ICR, followed by a return to a basal medium. Gas evolution rates were monitored and logged on a continuous basis, and effluent cell density was used as an indicator of cell growth rate of the immobilized cell mass. Startup of the reactor using a YEP medium showed a rapid buildup of cells in the reactor during the initial 110 h operation. The population density then stabilized at 1.6 x 10(11) cells/g sponge. A defined medium containing a complex mix of essential nutrients with an inorganic nitrogen source (ammonium sulfate) was able to maintain 90% of the productivity in the ICR as compared to the YEP medium, but proved unable to promote growth of the immobilized cell mass during startup. Experiments on reduced ammonium sulfate in the defined medium, and reduced yeast extract and peptone in YEP medium indicated that stable productivity could be maintained for extended periods (80 h) in the complete absence of any nutrients besides a few salts (potassium phosphate and magnesium sulfate). It was found that productivity rates dropped by 35-65% from maximal values as nitrogenous nutrients were eliminated from the test mediums, while growth rates (as determined by shed cell density from the reactor) dropped by 75-95%. Thus, nutritional deficiencies largely decoupled growth and productivity of the immobilized yeast which suggests productivity is both growth- and non-growth-associated for the immobilized cells. A yeast extract concentration of 0.375 g/L with or without 1 g/L ammonium sulfate was determined to be the minimum level which gave a sustained increase in productivity rates as compared to the nutritionally deficient salt medium. This represents a 94% reduction in complex nitrogenous nutrient levels compared to standard YEP batch medium (3 g/L YE and 3.5 g/L peptone).  相似文献   

17.
Summary Fed-batch fermentations ofClostridium thermohydrosulfuricum are carried out using medium rich in nitrogen source and with glucose as growth limiting factor. The ethanol/lactate yield increases as the specific growth rate and specific rate of consumption of glucose diminish. Under the experimental conditions chosen here this yield attained 3.66 moles. mole–1 with a maximal ethanol concentration of 12 g.l–1. In batch fermentation, the maximum concentration of ethanol did not exceed 8 g.l–1, independent of the concentration in glucose or nitrogen source applied.  相似文献   

18.
A strain ofBacillus cereus var.mycoides isolated from Burdwan soil producesl-glutamate in the medium. The strain is able to grow and produce in a synthetic medium but supplementation with casamino acid or yeast extract improves the yield. Maintenance of pH of the fermentation medium near neutrality prolongs the active growth period and improves the yield. Glucose and ammonium nitrate were found to be most suitable carbon and nitrogen sources, respectively. Cane sugar molasses (as a substitute for glucose) significantly stimulated the growth but glutamate production was less. Various B vitamins stimulate the growth and glutamate yield. The yield of glutamate under optimal condition is 5.2 g/l.  相似文献   

19.
A minimally defined medium was developed for the cultivation of the acetogen Clostridium thermoaceticum. The medium contained glucose as the carbon and energy source, ammonium sulfate as the nitrogen source, nicotinic acid as the sole essential vitamin, reductant, a phosphate-bicarbonate buffer, mineral salts and chelator, and a CO2 gas phase. Adaptation of C. thermoaceticum from undefined medium containing yeast extract and tryptone to the minimally defined medium required sequential passage on defined medium supplemented with amino acids and vitamins. Growth and cell yields were reduced on the minimal medium, but the activities of carbon monoxide dehydrogenase, hydrogenase, and formate dehydrogenase were comparable between undefined and minimal media.  相似文献   

20.
The diversity and content of available nitrogen sources in the growth medium both are very important in the accumulation of ergosterol in the yeast cell membrane. Growth on the good nitrogen sources such as ammonia can harvest more yeast cells than on poor ones, but ergosterol content in those yeast cells is relatively lower. Ergosterol content, one of the most variable parameters in ergosterol production by yeast cultivation, is greatly influenced by nitrogen limitation. The aim of our work was to study how the nitrogen sources affected the membrane ergosterol content and increase the total ergosterol yield. On the premise of keeping high ergosterol content in yeast cell, the ergosterol yield was enhanced by increasing the yeast biomass. Direct feed back control of glucose using an on-line ethanol concentration monitor was introduced to achieve high cell density. Ammonia, which acted as nitrogen source, was added to adjust pH during fermentation process, but its addition needed careful control. Cultivation in 5 L bioreactor was carried out under following conditions: culture temperature 30+/-1 degrees C, pH 5.5+/-0.1, agitation speed 600 rpm, controlling ethanol concentration below 1% and controlling ammonium ion concentration below 0.1 mol/L. Under these conditions the yeast dry weight reached 95.0+/-2.6 g/L and the ergosterol yield reached 1981+/-34 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号