首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
卢宝勇  李敏 《生命科学》2008,20(1):153-157
丝纤维特别是丝素蛋白和蜘蛛丝蛋白作为具有良好生物相容性的高分了生物材料在组织工程和生物医学领域里有着广泛的应用。本文阐述了近年来在组织工程研究中所涉及的利用丝纤维进行支架材料制备、细胞培养和体内植入检测手段等方面的研究概况。  相似文献   

2.
纳米技术在生物医学领域的研究现状   总被引:3,自引:0,他引:3  
纳米生物医学是纳米技术与现代生物医学技术结合的产物,近年来这一领域逐渐受到科学界和企业界的重视,得到了许多振奋人心的进展,具有广泛的应用前景。作者从纳米生物材料、纳米载体、医学诊断和纳米治疗技术四个方面讨论了纳米技术在医学领域的研究现状,希望为读者展现这一新生领域的巨大潜力。  相似文献   

3.
核基因序列在昆虫分子系统学上的应用   总被引:16,自引:2,他引:14  
核基因中含有更加丰富的生物学信息,运用核基因序列或将核基因序列与线粒体基因序列相结合研究昆虫的系统发育正成为分子系统学领域的一种发展趋势.核糖体基因中18S rDNA、28S rDNA、ITS已在昆虫分子系统学中得到了广泛的应用.与核糖体基因相比,虽然编码蛋白的核基因应用于昆虫分子系统学的种类不少,但大部分都是应用于双翅目和鳞翅目昆虫的分子系统学研究中,能够成功地普遍用于多个目昆虫的系统学研究的核基因并不多.本文简要介绍了应用于昆虫分子系统学的核中核糖体基因和编码蛋白的核基因,并分析了核基因序列在分子系统学应用上的局限性和应用前景.  相似文献   

4.
在漫长的进化过程中,生物系统中出现了多种多样的纳米粒子。其中铁蛋白纳米粒子广泛存在于所有生物体内,是参与生命活动的重要功能蛋白。近年来,铁蛋白自组装纳米粒子特殊的理化性质使其在生物医学领域应用中呈现出巨大的优势和应用前景。铁蛋白纳米笼的应用主要包括微量血清铁蛋白的临床检查、作为营养物质补充机体铁需求、纳米生物材料平台和纳米材料的生物呈递等。综述了铁蛋白纳米粒子在疾病诊断与治疗以及药物呈递与疫苗开发上的应用,并对铁蛋白纳米粒子在生物医学领域的应用前景进行展望。  相似文献   

5.
血管新生及丝蛋白材料血管化过程   总被引:1,自引:0,他引:1  
基于医用生物材料开发及组织工程中血管化问题的重要性,本文就与生物材料血管化紧密相关的血管发生和血管新生有关研究做一综述,分析了芽式和套迭式血管新生的模式及机制,特别是对丝蛋白材料的血管化过程进行了分析与探讨.通过深入探讨血管新生的模式和机制,进而阐明丝蛋白材料中毛细血管生长与生物材料微结构之间的关系,有助于设计出适合于细胞黏附、组织生长、血管化顺利进行的生物材料,促进生物材料的临床应用及组织工程血管化研究的深化.  相似文献   

6.
蜘蛛丝是性能优异的天然丝类材料,其中主要壶腹腺丝蛋白产生的牵引丝具有极高的力学性能、良好的生物相容性和生物可降解性,广泛应用于纺织、生物医学和环境工程等领域。深入研究蜘蛛丝蛋白分子结构与机械性能,有助于理解蜘蛛丝蛋白的成丝机制,为制备具有良好机械性能的人造蜘蛛丝纤维提供理论依据。该文围绕不同物种主要壶腹腺丝蛋白的分子组成、成丝机理和分子结构与机械性能之间的关系进行了阐述。  相似文献   

7.
高分子量RGD-蛛丝蛋白重组体的构建、高密度发酵及纯化   总被引:3,自引:0,他引:3  
蜘蛛丝是自然界综合性能优良的天然蛋白质纤维之一,因其具有良好的生物相容性和可降解性在生物医学领域具有潜在的应用前景。在本室已经构建的RGD-蜘蛛拖丝蛋白基因16多聚体基础上,通过首尾相连、倍加等方法进一步多聚化,得到RGD-蜘蛛拖丝蛋白基因32和64多聚体,分别将这两种多聚体与原核高效表达载体pET-30a( )连接,转化大肠杆菌BL21(DE3)pLysS,得到的32多聚体表达重组子命名为pNSR32,64多聚体表达重组子命名为pNSR64。通过酶切、琼脂糖电泳鉴定及对目的片段的测序均与理论值相符。将32和64多聚体基因序列注册GenBank,序列号分别为DQ469929和DQ837297。重组体pNSR32和pNSR64经IPTG诱导表达,SDS-PAGE图谱显示表达产物分子量分别为102kD和196.6kD,与天然蛛丝蛋白分子量接近并与理论值相吻合。高分子量的蛛丝蛋白在原核生物成功实现高效表达,在国内外尚未见报道。在此基础上对pNSR32工程菌进行高密度发酵,建立了简单高效的目的蛋白纯化工艺。  相似文献   

8.
蜘蛛丝蛋白的结构及其应用   总被引:16,自引:2,他引:14  
毛良  李盛贤  张欣 《生物技术》1999,9(5):38-41
蜘蛛的拖丝是一种既具有抗张强度又具有高度弹性的奇特蛋白质纤维。近看来,生物学者用现代生物工程技术和其它技术对蛛丝蛋白分子的结构和物理特性,主要是机械特性,进行了广泛深入的研究,取得了很大进展,指出了蛛丝蛋白的工业应用价值。1蛛丝蛋白结构研究进展概述编码一种拖丝蛋白(Spidroiril)的部分cDNA克隆以前已获分离产物,但是所预期的氨基酸顺序并不能解释拖丝蛋白的氨基酸组成。此后又分离出一种编码另一拖丝蛋白(SPidloin2)的部分dD:NA克隆,说明蜘蛛的拖丝是由复合蛋白组成的。Spidroin2的氨基酸顺序是一种与Spidro…  相似文献   

9.
重组蛛丝纤维作为一种性能优异的生物材料,具有良好的生物相容性,在生物医学工程领域具有极大的潜在应用价值。已有研究表明,重组蛛丝蛋白可用作血管、神经导管及药物载体等,但其生物学功能仍有待研究。本研究以大腹园蛛基因组为模板,设计特异性引物,通过PCR扩增获得大腹园蛛梨状腺丝(piriform spidroin: PySp)一个完整重复区(Rp)编码序列;此Rp模块与MiSpNT/CT模块重组,构建微小型杂合蛛丝蛋白MiSpNT-PySpRp-MiSpCT,成功在大肠杆菌BL21中高效表达,借助8 mol/L尿素裂解缓冲液进行变性纯化,得到纯度较高的杂合蛛丝蛋白MiSpNT-PySpRp-MiSpCT,产量约100 mg/L。CD图谱显示,MiSpNT-PySpRp-MiSpCT蛋白质溶液主要以α-螺旋和无规卷曲形式存在,随着溶液pH值降低,部分α-螺旋向β-折叠转变;红外光谱显示,在自然成丝及冻干过程中,部分α-螺旋转化为β-折叠,符合天然蛛丝蛋白成丝过程的二级结构变化特征。本研究结果为今后获得具有天然蛛丝纤维优异性能的人工重组蛛丝纤维材料提供一种新的可能。  相似文献   

10.
鸡白细胞介素 2 (chIL 2 )是近年来新发现的一类细胞因子 .根据Sundick等发表的鸡IL 2基因序列设计一对特异性引物 ,从ConA体外激活的脾淋巴细胞中提取mRNA ,通过RT PCR方法分别扩增和克隆了我国仙居鸡、丝羽乌骨鸡两个地方品种和艾维茵商品肉鸡IL 2cDNA .仙居鸡、丝羽乌骨鸡和艾维茵商品肉鸡IL 2基因的编码区均由 42 9nt组成 ,编码一个由 143个氨基酸组成的前体蛋白 .基因 5′端含有 17个核苷酸 ,3′端含有 2 85个核苷酸组成的非编码区 ,3′ UTR中含有 5个重复的“ATTTA”序列 .编码蛋白氨基酸与来自GenBank的Kestrel、Obese和SC品系的来杭鸡比较 ,氨基酸的突变主要发生在 2 8~ 3 2位 .而这一区域仙居鸡和丝羽乌骨鸡的编码氨基酸序列与Kestrel来杭鸡相同 ,艾维茵商品肉鸡与Obese和SC来杭鸡相同 .基因系统进化树分析表明 ,仙居鸡、丝羽乌骨鸡和Kestrel来杭鸡具有很近的亲缘关系 ,艾维茵商品肉鸡与Obese和SC来杭鸡具有很近的亲缘关系 .中国的药用鸡品种———丝羽乌骨鸡在非常保守的 13 3位发生了氨基酸突变  相似文献   

11.
We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.  相似文献   

12.
Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys.  相似文献   

13.
The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials.  相似文献   

14.
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19–25,  https://doi.org/10.1007/s11033-014-3735-z, 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.  相似文献   

15.
We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although the native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.  相似文献   

16.
Hu X  Shmelev K  Sun L  Gil ES  Park SH  Cebe P  Kaplan DL 《Biomacromolecules》2011,12(5):1686-1696
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4 °C (α helix dominated silk I structure), to highest content of ~60% crystallinity at 100 °C (β-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature-controlled regulation of water vapor to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods that use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties.  相似文献   

17.
Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields.  相似文献   

18.
Xia XX  Xu Q  Hu X  Qin G  Kaplan DL 《Biomacromolecules》2011,12(11):3844-3850
Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELP's repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.  相似文献   

19.
Novel protein chimeras constituted of "silk" and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](n)) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 28 equiv of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial-compatible conditions, the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared with the genetically derived variants. In all cases, the structure of the protein/chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk-based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source), and approach to synthesis (genetic or chemical) can be used to "tune" the properties of the composite materials formed and is a general approach that can be used to prepare a range of materials for biomedical and sensor-based applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号