首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Matrix metalloproteinases (MMPs) are thought to be responsible for dermal photoaging in human skin. In the present study, we evaluated the involvement of macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation in cultured human dermal fibroblasts. UVA (20 J/cm(2)) up-regulates MIF production, and UVA-induced MMP-1 mRNA production is inhibited by an anti-MIF antibody. MIF (100 ng/ml) was shown to induce MMP-1 in cultured human dermal fibroblasts. We found that MIF (100 ng/ml) enhanced MMP-1 activity in cultured fibroblasts assessed by zymography. Moreover, we observed that fibroblasts obtained from MIF-deficient mice were much less sensitive to UVA regarding MMP-13 expression than those from wild-type BALB/c mice. Furthermore, after UVA irradiation (10 J/cm(2)), dermal fibroblasts of MIF-deficient mice produced significantly decreased levels of MMP-13 compared with fibroblasts of wild-type mice. Next we investigated the signal transduction pathway of MIF. The up-regulation of MMP-1 mRNA by MIF stimulation was found to be inhibited by a PKC inhibitor (GF109203X), a Src-family tyrosine kinase inhibitor (herbimycin A), a tyrosine kinase inhibitor (genistein), a PKA inhibitor (H89), a MEK inhibitor (PD98089), and a JNK inhibitor (SP600125). In contrast, the p38 inhibitor (SB203580) was found to have little effect on expression of MMP-1 mRNA. We found that PKC-pan, PKC alpha/beta II, PKC delta (Thr505), PKC delta (Ser(643)), Raf, and MAPK were phosphorylated by MIF. Moreover, we demonstrated that phosphorylation of PKC alpha/beta II and MAPK in response to MIF was suppressed by genistein, and herbimycin A as well as by transfection of the plasmid of C-terminal Src kinase. The DNA binding activity of AP-1 was significantly up-regulated 2 h after MIF stimulation. Taken together, these results suggest that MIF is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts through PKC-, PKA-, Src family tyrosine kinase-, MAPK-, c-Jun-, and AP-1-dependent pathways.  相似文献   

3.
Neutral matrix metalloproteinases (MMPs) play an important role in bone matrix degradation accompanied by bone remodeling. We herein show for the first time that macrophage migration inhibitory factor (MIF) up-regulates MMP-13 (collagenase-3) mRNA of rat calvaria-derived osteoblasts. The mRNA up-regulation was seen at 3 h in response to MIF (10 microg/ml), reached the maximum level at 6-12 h, and returned to the basal level at 36 h. MMP-13 mRNA up-regulation was preceded by up-regulation of c-jun and c-fos mRNA. Tissue inhibitor of metalloproteinase (TIMP)-1 and MMP-9 (92-kDa type IV collagenase) were also up-regulated, but to a lesser extent. The MMP-13 mRNA up-regulation was significantly suppressed by genistein, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. Similarly, a selective mitogen-activated protein kinase (MAPK) kinase (MEK)1/2 inhibitor (PD98059) and c-jun/activator protein (AP)-1 inhibitor (curcumin) suppressed MMP-13 mRNA up-regulation induced by MIF. The mRNA levels of c-jun and c-fos in response to MIF were also inhibited by PD98059. Consistent with these results, MIF stimulated phosphorylation of tyrosine, autophosphorylation of Src, activation of Ras, activation of extracellular signal-regulated kinases (ERK) 1/2, a MAPK, but not c-Jun N-terminal kinase or p38, and phosphorylation of c-Jun. Osteoblasts obtained from calvariae of newborn JunAA mice, defective in phosphorylation of c-Jun, or newborn c-Fos knockout (Fos -/- ) mice, showed much less induction of MMP-13 with the addition of MIF than osteoblasts obtained from wild-type or littermate control mice. Taken together, these results suggest that MIF increases the MMP-13 mRNA level of rat osteoblasts via the Src-related tyrosine kinase-, Ras-, ERK1/2-, and AP-1-dependent pathway.  相似文献   

4.
5.
6.
7.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

8.
9.
10.
To analyze the role of Toll-like receptors (TLR) in the pathogenesis of rheumatoid arthritis, we have assessed the effects of stimulation of cultured synovial fibroblasts by the TLR-2 ligand bacterial peptidoglycan. By using high density oligonucleotide microarray analysis we identified 74 genes that were up-regulated >2.5-fold. Fourteen CC and CXC chemokine genes were among the genes with the highest up-regulation. Quantitative real-time PCR analysis confirmed up-regulation of granulocyte chemotactic protein (GCP)-2, RANTES, monocyte chemoattractant protein (MCP)-2, IL-8, growth-related oncogene-2, and to a lesser extent, macrophage-inflammatory protein 1alpha, MCP-1, EXODUS, and CXCL-16. GCP-2, RANTES, and MCP-2 were detected in culture supernatants of synovial fibroblasts stimulated with peptidoglycan. Chemokine secretion induced by stimulation of rheumatoid arthritis synovial fibroblasts via TLR-2 was functionally relevant as demonstrated by chemotaxis assays. GCP-2 and MCP-2 expression, which have not been reported previously in rheumatoid arthritis, was demonstrated in synovial tissue sections of patients diagnosed with rheumatoid arthritis but not in those with osteoarthritis. Correspondingly, synovial fluid levels were significantly higher in patients diagnosed with rheumatoid arthritis as compared with osteoarthritis. Thus, we present evidence for an induction of chemokine secretion by activation of synovial fibroblasts via TLR-2, possibly contributing to the formation of inflammatory infiltrates characteristically found in rheumatoid arthritis joints.  相似文献   

11.
12.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) plays an important role in inflammation and immunity via autocrine/paracrine and endocrine routes. We examined the presence of MIF in the synovial fluids of rheumatoid arthritis (RA) patients. The content of MIF in the synovial fluid was quantitated by enzyme-linked immunosorbent assay which revealed that the concentration of MIF for RA patients was 85. 7+/-35.2 ng/ml (mean+/-SD) (n=25). In comparison, the concentrations for osteoarthritis patients and normal volunteers were 19.5+/-5.3 ng/ml (n=12) and 10.4+/-1.1 ng/ml (n=5), respectively. The expression of MIF mRNA and presence of MIF protein in the synovial tissues of RA were demonstrated by Northern blot and Western blot analyses, respectively. Immunohistochemical analysis revealed that positive staining was largely observed in the cytoplasm of infiltrating T lymphocytes, which might be the major source of MIF detected in the synovial fluids. The pathophysiological role of MIF in RA remains to be elucidated; however, the present results for the first time suggest the possibility that MIF is involved in the potentiation of inflammatory and immunological responses in rheumatoid joints.  相似文献   

14.
Phorbol myristate acetate (PMA) added to human synovial fibroblast cultures caused a dose-dependent increase in the production of plasminogen activator inhibitor-type 1 (PAI-1). In addition, PMA inhibited endogenous and interleukin-1 (IL-1) induced plasminogen activator (PA) activity, while increasing mRNA PAI-1 levels. Other protein kinase C (PKC) activators, mezerein and teleocidin B4, caused similar effects. The simultaneous addition of the PKC antagonists, H-7 or staurosporine, prevented the inhibition of PA activity by PMA. This study shows that activation of PKC inhibits PA and stimulates PAI production in human synovial fibroblasts. These results suggest that activation of PKC may play an important role in regulating increased PA production associated with joint destruction in rheumatoid arthritis (RA).  相似文献   

15.
16.
Nitric oxide (NO) is a multifunctional messenger molecule generated from L-arginine by a family of enzymes, including nitric oxide synthase (NOS). This study was performed to examine whether NO modulates the production of matrix metalloproteinases (MMPs), which degrade all components of extracellular matrix (ECM), in rheumatoid synovial cells. We investigated the effects of exogenously generated NO by a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), on the MMPs production by rheumatoid synovial cells. Culture media conditioned by SNAP-treated synovial cells were examined by gelatin zymography and immunoblot analysis. Incubation of synovial cells with SNAP resulted in gelatinase A production in a dose-dependent fashion. Furthermore, RT-PCR analysis demonstrated that MMP-2 mRNA expression was induced in SNAP-treated synovial cells. In contrast, SNAP did not influence the production of TIMP-1 and TIMP-2, which preferentially inhibit MMP-2, by rheumatoid synovial cells. Our data indicate that NO could modulate MMP production by rheumatoid synovial cells and therefore contribute to ECM degradation of articular components in RA.  相似文献   

17.
18.
19.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by destruction of bone and cartilage, which is mediated, in part, by synovial fibroblasts. Matrix metalloproteinases (MMPs) are a large family of proteolytic enzymes responsible for matrix degradation. Macrophage migration inhibitory factor (MIF) is a cytokine that induces the production of a large number of proinflammatory molecules and has an important role in the pathogenesis of RA by promoting inflammation and angiogenesis.  相似文献   

20.
Macrophage-like synoviocytes and fibroblast-like synoviocytes (FLS) are known as the most active cells of rheumatoid arthritis (RA) and are close to the articular cartilage in a position enabling them to invade the cartilage. Macrophage-like synoviocytes and FLS expression of matrix metalloproteinases (MMPs) and their interaction has aroused great interest. The present article studied the expression of CD147, also called extracellular matrix metalloproteinase inducer, on monocytes/macrophages and FLS from RA patients and its potential role in enhancing MMPs and the invasiveness of synoviocytes. Expression of CD147 on FLS derived from RA patients and from osteoarthritis patients, and expression of CD147 on monocytes/macrophages from rheumatic synovial fluid and healthy peripheral blood were analyzed by flow cytometry. The levels of CD147, MMP-2 and MMP-9 mRNA in FLS were detected by RT-PCR. The role of CD147 in MMP production and the cells' invasiveness in vitro were studied by the co-culture of FLS with the human THP-1 cell line or monocytes/macrophages, by gel zymography and by invasion assay. The results showed that the expression of CD147 was higher on RA FLS than on osteoarthritis FLS and was higher on monocytes/macrophages from rheumatic synovial fluid than on monocytes/macrophages from healthy peripheral blood. RT-PCR showed that the expressions of CD147, MMP-2 and MMP-9 mRNA was higher in RA FLS than in osteoarthritis FLS. A significantly elevated secretion and activation of MMP-2 and MMP-9 were observed in RA FLS co-cultured with differentiated THP-1 cells or RA synovial monocytes/macrophages, compared with those co-cultured with undifferentiated THP-1 cells or healthy control peripheral blood monocytes. Invasion assays showed an increased number of invading cells in the co-cultured RA FLS with differentiated THP-1 cells or RA synovial monocytes/macrophages. CD147 antagonistic peptide inhibited the MMP production and the invasive potential. Our studies demonstrated that the CD147 overexpression on monocytes/macrophages and FLS in RA patients may be responsible for the enhanced MMP secretion and activation and for the invasiveness of synoviocytes. These findings suggest that CD147 may be one of the important factors in progressive joint destruction of RA and that CD147 may be a potential therapeutic target in RA treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号