首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.  相似文献   

2.
 以野生型钷齿远蚓为材料,组织匀浆后,经生理盐水抽提,硫酸铵分级沉淀,葡聚糖凝胶过滤和DEAE离子交换层析,得到两种纯的蚯蚓溶酶,具有强烈的溶解纤维蛋白的作用。它们都是糖蛋白,非寡聚酶,分子量分别为23,000、40,000。测定了一个酶的氨基酸组成,它对某些底物的作用,被一些抑制剂抑制的程度,说明它是练氨酸蛋白酶类、胰蛋白酶类酶  相似文献   

3.
Choi D  Cha WS  Park N  Kim HW  Lee JH  Park JS  Park SS 《Bioresource technology》2011,102(3):3279-3285
A fibrinolytic enzyme has been purified from the fruiting bodies of Korean Cordyceps militaris. The molecular mass of the enzyme was estimated to be 34 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fibrin-zymography, and gel filtration chromatography. The 15 amino acid residues of the N-terminal sequence of the enzyme were APVEQCDAPVGLARL, which is dissimilar to those of fibrinolytic enzymes from other mushrooms. Optimal pH and temperature values of the enzyme were 7.0 and 40°C, respectively. The enzyme activity was completely inhibited by phenylmethylsulfonyl fluoride (PMSF), TPCK, 1,10-phenanthroline, Cu(2+), and Ba(2+). It was also significantly inhibited by aprotinin, EDTA, and EGTA. The enzyme showed a higher specificity for a synthetic substrate, N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, exhibiting that it is a chymotrypsin-like serine metalloprotease. The enzyme preferentially hydrolyzed the fibrinogen Aα-, followed by the Bβ-chains and the γ-chain. The α, β, and γ-γ chains of fibrin were also degraded by the enzyme.  相似文献   

4.
A serine protease with preference for fibrin protein was purified and characterized from Bacillus amyloliquefaciens MCC2606, isolated from dosa batter. The protease was purified using ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The degradation activity of the protease toward the fibrin was significantly higher compared with other protein substrates in the study. The molecular weight of the CFR15-protease was estimated to be 32?kDa based on SDS-PAGE. The purified enzyme exhibited both fibrinolytic and fibrinogenolytic activity. The optimum pH and temperature for the activity of the enzyme was found to be 10.5 and 45°C. A significant inhibition was seen with the protease inhibitors phenyl methyl sulphonyl fluoride and ethylene diamine tetra acetic acid and the activity of the enzyme was enhanced in presence of Mn2+. There was an observed increase in vitro activated partial thromboplastin time and prothrombin time of both time and dose dependent study. Among the four chains of fibrin, the β-chain of fibrin appears to be the primary component and site susceptible for CFR15-protease in early action as indicated by MS/MS analysis of initial degradation products. These results indicated that the CFR15-protease have the potential to be an effective fibrinolytic agent.  相似文献   

5.
In this study we purified a fibrinolytic enzyme from the culture supernatant of Flammulina velutipes mycelia by ion exchange and gel filtration chromatographies, it was designated as F. velutipes protease (FVP-I). This purification protocol resulted in 18.52-fold purification of the enzyme at a final yield of 0.69%. The molecular mass of the purified enzyme was estimated to be 37 kDa by SDS-PAGE, fibrin-zymography and size exclusion by FPLC. This protease effectively hydrolyzed fibrin, preferentially digesting alpha-chain over beta-and gamma-gamma chain. Optimal protease activity was found to occur at a pH of 6.0 and a temperature of 20 to 30 degrees C. The protease activity was inhibited by Cu2+, Fe2+ and Fe3+ ions, but was found to be enhanced by Mn2+ and Mg2+ ions. Furthermore, FVP-I activity was potently inhibited by EDTA and EGTA, and it was found to exhibit a higher specificity for chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 20 amino acid residues of the N-terminal sequence of FVP-I were LTYRVIPITKQAVTEGTELL. They had a high degree of homology with hypothetical protein CC1G_11771, GeneBank Accession no. EAU86463.  相似文献   

6.
A fibrinolytic enzyme obtained from B. subtilis was purified, using DEAE-cellulose column chromatography, and gel filtration on Sephadex G-100. The preparation was homogeneous as tested by gel filtration on Sephadex G-200, and disc electrophoresis. The molecular weight of this enzyme was 29.400 estimated by gel filtration on Sephadex G-100. The optimum pH for enzyme activity was 7.2 Copper ions significantly increased enzyme activity, while Zn++ and Mn++ caused marked inhibition.  相似文献   

7.
In this study we purified a fibrinolytic enzyme from the culture supernatant of Flammulina velutipes mycelia by ion exchange and gel filtration chromatographies, it was designated as F. velutipes protease (FVP-I). This purification protocol resulted in 18.52-fold purification of the enzyme at a final yield of 0.69%. The molecular mass of the purified enzyme was estimated to be 37 kDa by SDS–PAGE, fibrin-zymography and size exclusion by FPLC. This protease effectively hydrolyzed fibrin, preferentially digesting α-chain over β-and γ–γ chain. Optimal protease activity was found to occur at a pH of 6.0 and a temperature of 20 to 30 °C. The protease activity was inhibited by Cu2+, Fe2+ and Fe3+ ions, but was found to be enhanced by Mn2+ and Mg2+ ions. Furthermore, FVP-I activity was potently inhibited by EDTA and EGTA, and it was found to exhibit a higher specificity for chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 20 amino acid residues of the N-terminal sequence of FVP-I were LTYRVIPITKQAVTEGTELL. They had a high degree of homology with hypothetical protein CC1G_11771, GeneBank Accession no. EAU86463.  相似文献   

8.
A fibrinolytic enzyme was purified from the cultured mycelia of Armillaria mellea by ion-exchange chromatography followed by gel filtration, and was designated A. mellea metalloprotease (AMMP). The purification protocol resulted in a 627-fold purification of the enzyme, with a final yield of 6.05%. The apparent molecular mass of the purified enzyme was estimated to be 21kDa by SDS-PAGE, fibrin-zymography and gel filtration chromatography, which revealed a monomeric form of the enzyme. The optimal reaction pH value and temperature were, pH 6.0, and 33 degrees C, respectively. This protease effectively hydrolyzed fibrinogen, preferentially digesting the Aalpha-chain over the Bbeta- and r-chains. Enzyme activity was inhibited by Cu(2+) and Co(2+), but enhanced by the addition of Ca(2+) and Mg(2+) ions. Furthermore, AMMP activity was potently inhibited by EDTA, and was found to exhibit a higher specificity for the substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 24 amino acid residues of the N-terminal sequence were MFSLSSRFFLYTLCL SAVAVSAAP, which is extremely similar to the 24 amino acid residues of the N-terminal sequence of the fruiting body of A. mellea. These data suggest that the fibrinolytic enzyme AMMP, obtained from the A. mellea exhibits a profound fibrinolytic activity. The mycelia of A. mellea may thus represent a potential source of new therapeutic agents to treat thrombosis.  相似文献   

9.
A novel anticoagulant protein from Scapharca broughtonii   总被引:1,自引:0,他引:1  
An anticoagulant protein was purified from the edible portion of a blood ark shell, Scapharca broughtonii, by ammonium sulfate precipitation and column chromatography on DEAE-Sephadex A-50, Sephadex G- 75, DEAE-Sephacel, and Biogel P-100. In vitro assays with human plasma, the anticoagulant from S. broughtonii, prolonged the activated partial thromboplastin time (APTT) and inhibited the factor IX in the intrinsic pathway of the blood coagulation cascade. But, the fibrin plate assay did not show that the anticoagulant is a fibrinolytic protease. The molecular mass of the purified S. broughtonii anticoagulant was measured to be about 26.0 kDa by gel filtration on a Sephadex G-75 column and SDSPAGE under denaturing conditions. The optimum activity in the APTT assay was exhibited at pH 7.0-7.5 and 40-45 degrees C in the presence of Ca(2+).  相似文献   

10.
Proteases are the hydrolytic enzymes which hydrolyzes peptide bond between proteins with paramount applications in pharmaceutical and industrial sector. Therefore production of proteases with efficient characteristics of biotechnological interest from novel strain is significant. Hence, in this study, an alkaline serine protease produced by Bacillus cereus strain S8 (MTCC NO 11901) was purified and characterized. The alkaline protease was purified by ammonium sulfate precipitation (50%), ion exchange (DEAE-Cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. As a result of this purification, a protein with specific activity of 300U/mg protein was obtained with purification fold 17.04 and recovery percentage of 34.6%. The molecular weight of the purified protease was determined using SDS-PAGE under non-reducing (71?kDa) and reducing conditions (35?kDa and 22?kDa). Zymogram analysis revealed that proteolytic activity was only associated with 22?kDa. These results indicate that existence of the enzyme as dimer in its native state. The molecular weight of the protease (22?kDa) was also determined by gel filtration (Sephadex G-200) chromatography and it was calculated as 21.8?kDa. The optimum activity of the protease was observed at pH 10.0 and temperature 70?°C with great stability towards pH and temperature with casein as a specific substrate. The enzyme was completely inhibited by PMSF and TLCK indicating that it is a serine protease of trypsin type. The enzyme exhibits a great stability towards organic solvents, oxidizing and bleaching agents and it is negatively influenced by Li2+ and Co2+ metal ions. The purified protein was further characterized by Matrix Assisted Laser Desorption Ionization/Mass Spectroscopy (MALDI/MS) analysis which reveals that total number of amino acids is 208 with isoelectric point 9.52.  相似文献   

11.
A novel fibrinolytic enzyme from Rhizopus chinensis 12 was purified through ammonium sulfate precipitation, hydrophobic interaction, ionic exchange, and gel filtration chromatography. The purification protocol resulted in a 893-fold purification of the enzyme, with a final yield of 42.6%. The apparent molecular weight of the enzyme was 18.0 kDa, determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and 16.6 kDa by gel filtration chromatography, which revealed a monomeric form of the enzyme. The isoelectric point of the enzyme estimated by isoelectric focusing electrophoresis was 8.5±0.1. The enzyme hydrolyzed fibrin. It cleaved the , , and chains of fibrinogen simultaneously, and it also hydrolyzed casein and N-succinyl-Ala-Ala-Pro-Phe-pNA. The enzyme had an optimal temperature of 45°C, and an optimal pH of 10.5. EDTA, PCMB, and PMSF inhibited the activity of the enzyme, and SBTI, Lys, TPCK, and Aprotinine had no obvious inhibition, which suggested that the activity center of the enzyme had hydrosulfuryl and metal. The first 12 amino acids of the N-terminal sequence of the enzyme were S-V-S-E-I-Q-L-M-H-N-L-G and had no homology with that of other fibrinolytic enzyme from other microbes.  相似文献   

12.
Collagenase from the internal organs of a mackerel was purified using acetone precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, gel filtration chromatography on a Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel, and gel filtration chromatography on a Sephadex G-75 column. The molecular mass of the purified enzyme was estimated to be 14.8 kDa by gel filtration and SDS-PAGE. The purification and yield were 39.5-fold and 0.1% when compared to those in the starting-crude extract. The optimum pH and temperature for the enzyme activity were around pH 7.5 and 55 degrees, respectively. The K(m) and V(max) of the enzyme for collagen Type I were approximately 1.1mM and 2,343 U, respectively. The purified enzyme was strongly inhibited by Hg2+, Zn2+, PMSF, TLCK, and the soybean-trypsin inhibitor.  相似文献   

13.
N-Acetyl-beta-hexosaminidases A and B were purified to homogeneity from human placenta. In the initial step of purification, the enzymes were adsorbed on concanavalin A-Sepharose 4B and eluted from the column with alpha-methyl D-mannosides. Subsequent purification steps included DEAE-cellulose column chromatography, QAE-Sephadex [diethyl-(2-hydroxypropyl)aminoethyl-Sephadex] column chromatography, Sephadex G-200 gel filtration and preparative disc polyacrylamide-gel electrophoresis, followed by another QAE-Sephadex chromatography for the hexosaminidase A preparation, and DEAE-cellulose column chromatography, calcium phosphate gel chromatography, Sephadex G-200 gel filtration, QAE-Sephadex chromatography and CM-cellulose chromatography for the hexosaminidase B preparation. The purified preparations, particularly hexosaminidase A, had significantly higher specific enzyme activities than previously reported. The preparations moved on polyacrylamide-gel electrophoresis as single protein bands, which also stained for enzyme activity. Sedimentation-equilibrium centrifugation indicated homogenous dispersion of the enzymes, and the molecular weight was estimated as about 110000 for both enzymes. Complete amino acid and carbohydrate compositions of the two isoenzymes were determined, and, in contrast with previous suggestions, no sialic acid was found in the enzymes.  相似文献   

14.
The purification and characterization of a Mn2+-dependent alkaline serine protease produced by Bacillus pumilus TMS55 were investigated. The enzyme was purified in three steps: concentrating the crude enzyme using ammonium sulfate precipitation, followed by gel filtration and cation-exchange chromatography. The purified protease had a molecular mass of approximately 35 kDa, was highly active over a broad pH range of 7.0 to 12.0, and remained stable over a pH range of 7.5 to 11.5. The optimum temperature for the enzyme activity was found to be 60 degreesC. PMSF and AEBSF (1 mM) significantly inhibited the protease activity, indicating that the protease is a serine protease. Mn2+ ions enhanced the activity and stability of the enzyme. In addition, the purified protease remained stable with oxidants (H2O2, 2%) and organic solvents (25%), such as benzene, hexane, and toluene. Therefore, these characteristics of the protease and its dehairing ability indicate its potential for a wide range of commercial applications.  相似文献   

15.
In this study we purified and characterized a fibrinolytic protease from the mycelia of Perenniporia fraxinea. The apparent molecular mass of the purified enzyme was estimated to be 42 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), fibrin zymography and size exclusion using fast protein liquid chromatography (FPLC). The first 20 amino acid residues of the N-terminal sequence were ASYRVLPITKELLPPEFFVA, which shows a high degree of similarity with a fungalysin metallopeptidase from Coprinopsis cinerea. The optimal reaction pH value and temperature were pH 6.0 and 35–40 °C, respectively. Results for the fibrinolysis pattern showed that the protease rapidly hydrolyzed the fibrin α-chain followed by the β-chain. The γ–γ chains were also hydrolyzed, but more slowly. The purified protease effectively hydrolyzed fibrinogen, preferentially digesting the Aα-chains of fibrinogen, followed by Bβ- and γ-chains. We found that protease activity was inhibited by Cu2+, Fe3+, and Zn2+, but enhanced by the additions of Mn2+, Mg2+ and Ca2+ metal ions. Furthermore, the protease activity was inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The mycelia of P. fraxinea may thus represent a source of new therapeutic agents to treat thrombosis.  相似文献   

16.
Abstract After ammonium sulphate precipitation, Sephadex G-75 gel filtration, Lys-Sepharose 4B affinity chromatography and elution from electrophoresis, the fibrinolytic protease (TAFP) was isolated and purified from the extract of T. amaenus Walker gut. It appeared a single band corresponding to molecular weight of approximately 67kD on SDS-PAGE and an probably pI of 7.2 on IEF. On fibrin plate and plasminogen-free fibrin plate (heated at 85°C for 30 minutes to eliminate plasminogen), TAFP showed same fibrinolytic activity. The result might indicate that TAFP is a fibrinolytic enzyme degrading fibrin, as well as a plasminogen activator degrading fibrin via activating plasminogen. The result of chromogenic substrates indicated that TAFP possesses trypsin-like activity specifically degrading argininyl amide bond or peptide bond, but has no chymotrypsin activity. TAFP was almost inhibited powerfully by antipain, PMSF, soybean trypsin inhibitor and soybean Bowman-Birk inhibitor. However, leupeptin, antitrypsin and TLCK was more powerful effective inhibitors of TAFP. Optimal reaction pH of TAFP was 7.5, and it was stable in 5.5–7.0 of pH range.  相似文献   

17.
Oxytocinase (cystyl-aminopeptidase) [EC 3.4.11.3] was isolated from monkey placenta in a purified form by a six-step prodedure comprising extraction from monkey placenta homogenate, ammonium sulfate fractionation, repeated chromatography on hydroxylapatite, chromatography on a column of DEAE-cellulose and gel filtration on a column of Sephadex G-200. The purified enzyme showed a single band on polyacrylamide disc electrophoresis. Oxytocin was inactivated by this enzyme preparation. The enzyme hydrolyzed several aminoacyl-beta-naphthylamides. A terminal amino group was required for enzyme activity. The molecular weight of the purified enzyme was estimated to be 87,000 by gel filtration and 83,000 by sodium dodecyl sulfate gel electrophoresis. Other properties of the enzyme, the effects of metal ions and various chemical reagents on the enzyme activity, the pH optimum, and Km values for a number of aminoacyl-beta-naphthylamides were also examined.  相似文献   

18.
The coagulant protein from the venom of Russell's viper was purified by means of successive chromatography on Sephadex G-50, DEAE-cellulose and Sephadex G-200. The purified coagulant protein was homogeneous by polyacrylamide gel electrophoresis and ultracentrifugation. The molecular weight was estimated to be about 100 000 by ultracentrifuge analysis and 130 000 by gel filtration. The coagulant protein contains 11.1% carbohydrate which includes 5.1% hexose (galactose: mannose = 1:1), 5% hexosamine (glucosamine), and 1% neuraminic acid (N-acetylneuraminic acid and N-glycolyneuraminic acid). The isoelectric point is pH 6.3. The results of both sodium dodecyl sulfate electrophoresis and gel filtration in 6 M guanidium chloride suggest that it consists of four polypeptide chains. The coagulant protein functions as an enzyme in activating blood coagulation factor X in the presence of Ca2+. N-a-p-Toluenesulfonyl-L-arginine methyl ester hydrolyzing activity in the preparation definitely decreased during purification and it suggests that the clotting activity is not associated with the esterase activity. The clotting activity is inhibited by diisopropyl phosphorofluoridate and by phenylmethylsulfonyl fluoride, suggesting that the coagulant protein is a serine protease. The optimum pH is between pH 7.0 and pH 8.0. At neutral pH the coagulant protein is stable below 50 degrees C, but is rapidly inactivated above 55 degrees C.  相似文献   

19.
A serine collagenolytic protease was purified from the internal organs of filefish, Novoden modestrus, by ammonium sulfate, ion-exchange chromatography on a DEAE-Sephadex A-50, ion-exchange rechromatography on a DEAE-Sephadex A-50, and gel filtration on a Sephadex G- 150 column. The molecular mass of the filefish serine collagenase was estimated to be 27.0 kDa by gel filtration and SDS-PAGE. The purified collagenase was optimally active at pH 7.0-8.0 and 55 degrees C. The purified enzyme was rich in Ala, Ser, Leu, and Ile, but poor in Trp, Pro, Tyr, and Met. In addition, the purified collagenolytic enzyme was strongly inhibited by N-P-toluenesulfonyl-L-lysine chloromethyl ketone (TLCK), diisopropylfluorophosphate (DFP), and soybean trypsin inhibitor.  相似文献   

20.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatographies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25,000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0. Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37 degrees C for 60 min. The optimum pH was pH 11.5-13.0 at 37 degrees C and the optimum temperature was 70 degrees C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80 degrees C and stability from pH 4-12.5 at 60 degrees C and below 75 degrees C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of microbial serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号