首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bovine papillomavirus E7 oncoprotein inhibits anoikis   总被引:1,自引:0,他引:1       下载免费PDF全文
The bovine papillomavirus type 1 (BPV-1) E7 oncoprotein is required for the full transformation activity of the virus. Although BPV-1 E7 by itself is not sufficient to induce cellular transformation, it enhances the abilities of the other BPV-1 oncogenes to induce anchorage independence. We have been exploring the mechanisms by which E7 might affect the transformation efficiency of other viral oncoproteins and in particular whether it might protect cells from apoptosis. We report here that BPV-1 E6 and E7 can each independently inhibit anoikis, a type of apoptosis that is induced upon cell detachment. Using site-directed mutagenesis, we determined regions of the E7 protein that were essential for its antiapoptotic activity. The ability of E7 to inhibit anoikis did partially correlate with an ability to enhance anchorage independence of BPV-1 E6-transformed cells. In addition, the antiapoptotic activity of E7 also only partially correlated with its ability to bind p600, a cellular protein that has previously been reported to play a role in anoikis. We conclude that the contribution of E7 to BPV-induced cellular transformation may involve its ability to inhibit anoikis but that additional functional activities must also be involved.  相似文献   

3.
Bovine papillomavirus type 1 (BPV-1) is a small DNA virus that causes fibropapillomas of the host. BPV-1 has served as the prototype for studies of the molecular biology of the papillomaviruses. BPV-1 efficiently induces anchorage-independent growth and focus formation in murine C127 cells. The transforming properties of BPV-1 primarily reside in two genes, E5 and E6. Each of these genes is sufficient to transform cells. Although no independent transformation activity has been detected for E7, it was shown to be required for full transformation of C127 by BPV-1. We investigated the biological activities of BPV-1 E7 in several assays. Our results indicate that expression of BPV-1 E7 sensitizes cells to tumor necrosis factor alpha (TNF)-induced apoptosis. The TNF-induced apoptosis in E7-expressing cells was accompanied by increased release of arachidonic acid, indicating that phospholipase A(2) was activated. Unlike the E7 proteins from the cancer-related human papillomaviruses, the BPV-1 E7 protein does not associate efficiently with the retinoblastoma protein (pRB) in vitro, nor does it significantly affect the pRB levels in cultured cells. Furthermore, BPV-1 E7 sensitizes Rb-null cells to TNF-induced apoptosis. These studies indicate that BPV-1 E7 can sensitize cells to apoptosis through mechanisms that are independent of pRB.  相似文献   

4.
5.
6.
7.
Productively infected bovine fibropapillomas were examined for bovine papillomavirus type 1 (BPV-1) E7 localization. BPV-1 E7 was observed in the cytoplasm of basal and lower spinous epithelial cells, coexpressed in the cytoplasm of basal cells with the E5 oncoprotein. E7 was also observed in nucleoli throughout the basal and spinous layers but not in the granular cell layer. Ectopic expression of E7 in cultured epithelial cells gave rise to localization similar to that seen in productive fibropapillomas, with cytoplasmic and nucleolar expression observed. Consistent with the coexpression of E7 and E5 in basal keratinocytes, BPV-1 E7 cooperated with E5 as well as E6 in an anchorage independence transformation assay. While E5 is expressed in both basal and superficial differentiating keratinocytes, BPV-1 E7 is only observed in basal and lower spinous epithelial cells. Therefore, BPV-1 E7 may serve to modulate the cellular response of basal epithelial cells to E5 expression.  相似文献   

8.
9.
10.
11.
12.
The bovine papillomavirus type 1 (BPV-1) oncoprotein encoded by the E5 ORF is a small highly hydrophobic protein, which is capable of inducing oncogenic transformation of cells. We studied the effect of the BPV-1 E5 protein expression on the arachidonic acid metabolism in monkey (COS1) and human (C33A) cells. At relatively low protein concentrations the phospholipase A(2) (PLA(2)) activity and the arachidonic acid (AA) metabolism are activated. E5 mutant proteins, lacking cysteines responsible for the dimerisation of the protein (C37S, C37SC39S), and truncated E5, lacking the C-terminal region, are non-transforming and unable to stimulate the PLA(2) activity and AA metabolism. The transformation-defective mutant D33V, which does not activate the platelet-derived growth factor receptor (PDGFR), activates AA metabolism like wt E5. Our data suggest that the BPV-1 E5 protein could stimulate the AA metabolism independently of PDGF receptor.  相似文献   

13.
14.
15.
Bovine papillomavirus type 1 (BPV-1) and, less commonly, BPV-2 are associated with the pathogenesis of common equine skin tumors termed sarcoids. In an attempt to understand the mechanisms by which BPV-1 induces sarcoids, we used gene expression profiling as a screening tool to identify candidate genes implicated in disease pathogenesis. Gene expression profiles of equine fibroblasts transformed by BPV-1 experimentally or from explanted tumors were compared with those of control equine fibroblasts to identify genes associated with expression of BPV-1. Analysis of the microarray data identified 81 probe sets that were significantly (P < 0.01) differentially expressed between the BPV-1-transformed and control cell lines. Expression of several deregulated genes, including MMP-1, CXCL5, FRA-1, NKG7, TLR4, and the gene encoding the major histocompatibility complex class I (MHC-I) protein, was confirmed using other BPV-1-transformed cell lines. Furthermore, expression of these genes was examined using a panel of 10 sarcoids. Increased expression of MMP-1, CXCL5, FRA-1, and NKG7 was detected in a subset of tumors, and TLR4 and MHC I showed robust down-regulation in all tumors. Deregulated expression was confirmed at the protein level for MMP-1 and MHC-I. The present report identifies genes modulated by BPV-1 transformation and will help identify the molecular mechanisms involved in disease pathogenesis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号