首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Following the discovery of synergistic action between oxacillin and manuka honey against methicillin-resistant Staphylococcus aureus, this study was undertaken to search for further synergistic combinations of antibiotics and honey that might have potential in treating wounds. Fifteen antibiotics were tested with and without sublethal concentrations of manuka honey against each of MRSA and Pseudomonas aeruginosa using disc diffusion, broth dilution, E strip, chequerboard titration and growth curves. Five novel antibiotic and manuka honey combinations were found that improved antibacterial effectiveness in vitro and these offer a new avenue of future topical treatments for wound infections caused by these two important pathogens.  相似文献   

2.
Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment.  相似文献   

3.
Resurgence of sensitivity of the antibiotics, to which the pathogen had developed resistance in the past, requires special attention for strengthening the reservoir of antimicrobial compounds. Reports in the recent past have suggested that co-trimoxazole (COT) has regained its activity against methicillin resistant Staphylococcus aureus (MRSA). The present study exploited the use of COT in the presence of an antimicrobial peptide (AMP), cryptdin-2 (a murine Paneth cell alpha defensin), in order to reduce the selective pressure of the antibiotic on the pathogen. In vitro antibacterial activity and in vivo efficacy of the combination was ascertained against MRSA induced systemic infection using a murine model. Observations of the present study might help in restoring the regained activity of conventional antibiotics, such as COT, when used in combination with novel antimicrobial molecules like AMPs. This might prove as a viable strategy to eliminate the chances of re-occurrence of resistance due to their multi-prong targeting and synergistically combating infections caused by these resistant pathogens.  相似文献   

4.

Background

Staphylococcus aureus, one of the most frequently isolated pathogens in both hospitals and the community, has been particularly efficient at developing resistance to antimicrobial agents. In developed countries, as methicillin-resistant S. aureus (MRSA) has prevailed and, furthermore, as S. aureus with reduced susceptibility to vancomycin has emerged, the therapeutic options for the treatment of S. aureus infections have become limited. In developing countries and especially African countries very little is known concerning the resistance of S. aureus to antibiotics. In Madagascar no data exist concerning this resistance.

Objective

To update the current status of antibiotic resistance of S. aureus in Antananarivo, Madagascar.

Methods

Clinical S. aureus isolates were collected from patients at the Institut Pasteur of Madagascar from January 2001 to December 2005. Susceptibility tests with 18 antibiotics were performed by the disk diffusion method.

Results

Among a total of 574 isolates, 506 were from community-acquired infections and 68 from nosocomial infections. There was no significant difference in the methicillin resistance rate between community-acquired strains (33 of 506; 6.5%) and nosocomial strains (3 of 68, 4.4%). Many MRSA isolates were resistant to multiple classes of antibiotics. Resistance to tetracyclin, trimethoprim-sulfamethoxazole and erythromycin was more common. Among MRSA isolates resistance rates to rifampicin, fusidic acid, gentamicin and ciprofloxacin were lower than that observed with other drugs easily available in Madagascar. No isolates were resistant to glycopeptides.

Conclusion

The rate of methicillin-resistant S. aureus is not different between community-acquired and nosocomial infections and is still rather low in Madagascar.  相似文献   

5.
《Phytomedicine》2014,21(1):25-29
The aim of this study was to evaluate the antimicrobial activity of lapachol, α-lapachone, β-lapachone and six antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, gentamicin, ciprofloxacin and meropenem) against twelve strains of Staphylococcus aureus from which resistance phenotypes were previously determined by the disk diffusion method. Five S. aureus strains (LFBM 01, LFBM 26, LFBM 28, LFBM 31 and LFBM 33) showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between β-lapachone and antimicrobial agents, busing checkerboard method. The criteria used to evaluate the synergistic activity were defined by the Fractional Inhibitory Concentration Index (FICI). Among the naphthoquinones, β-lapachone was the most effective against S. aureus strains. FICI values ranged from 0.07 to 0.5, suggesting a synergistic interaction against multidrug resistant S. aureus (MRSA) strains. An additive effect was observed with the combination β-lapachone/ciprofloxacin against the LFBM 33 strain. The combination of β-lapachone with cefoxitin showed no added benefit against LFBM 31 and LFBM 33 strains. This study demonstrated that, in general, β-lapachone combined with beta lactams antimicrobials, fluoroquinolones and carbapenems acts synergistically inhibiting MRSA strains.  相似文献   

6.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

7.
Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity.  相似文献   

8.

Background

There has been considerable effort to discover plant-derived antibacterials against methicillin-resistant strains of Staphylococcus aureus (MRSA) which have developed resistance to most existing antibiotics, including the last line of defence, vancomycin. Pentacyclic triterpenoid, a biologically diverse plant-derived natural product, has been reported to show anti-staphylococcal activities. The objective of this study is to evaluate the interaction between three pentacyclic triterpenoid and standard antibiotics (methicillin and vancomycin) against reference strains of Staphylococcus aureus.

Methods and Results

The activity of the standard antibiotics and compounds on reference methicillin-sensitive and resistant strains of S. aureus were determined using the macrodilution broth method. The minimum inhibitory concentration (MIC) of the compounds was compared with that of the standard antibiotics. The interaction between any two antimicrobial agents was estimated by calculating the fractional inhibitory concentration (FIC index) of the combination. The various combinations of antibiotics and compounds reduced the MIC to a range of 0.05 to 50%.

Conclusion

Pentacyclic triterpenoids have shown anti-staphylococcal activities and although individually weaker than common antibiotics produced from bacteria and fungi, synergistically these compounds may use different mechanism of action or pathways to exert their antimicrobial effects, as implicated in the lowered MICs. Therefore, the use of current antibiotics could be maintained in their combination with plant-derived antibacterial agents as a therapeutic option in the treatment of S. aureus infections.  相似文献   

9.
The medical importance of bacterial biofilms has increased with the recognition of biofilms as one of the major contributors to the slow or non-healing chronic wounds such as diabetic foot ulcers, venous leg ulcers, and pressure ulcers. Being a protected community of microorganisms, biofilms are notoriously refractory to antibiotic treatments. As the conventional treatment modalities have proven ineffective, this study provides the in vitro evidence to support the use of a novel combination of DispersinB® antibiofilm enzyme that inhibits biofilm formation and disperses preformed biofilm, and thus making the biofilm bacteria more susceptible to a broad-spectrum KSL-W antimicrobial peptide. The combination of DispersinB® and KSL-W peptide showed synergistic antibiofilm and antimicrobial activity against chronic wound infection associated biofilm-embedded bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Coagulase-negative Staphylococci (CoNS), and Acinetobacter baumannii. In addition, the wound gel formulation comprising DispersinB®, KSL-W peptide, and a gelling agent Pluronic F-127 showed a broad-spectrum and enduring antimicrobial activity against test organisms. Furthermore, as compared to commercial wound gel Silver-Sept?, DispersinB®-KSL-W peptide-based wound gel was significantly more effective in inhibiting the biofilm-embedded MRSA, S. epidermidis, CoNS, Vancomycin-resistant Enterococci, A. baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa (P < 0.05). Thus, this study provides promising evidence for the potential application of antibiofilm-antimicrobial DispersinB®-KSL-W wound gel in chronic wound management.  相似文献   

10.
《Phytomedicine》2014,21(12):1666-1674
Acinetobacter baumannii is a rapidly emerging, highly resistant clinical pathogen with increasing prevalence. In recent years, the limited number of antimicrobial agents available for treatment of infections with multi-drug resistant (MDR) strains reinforced tendency for discovery of novel antimicrobial agents or treatment strategies. The aim of the study was to determine antimicrobial effectiveness of three Myrtus communis L. essential oils, both alone and in combination with conventional antibiotics, against MDR A. baumannii wound isolates. The results obtained highlighted the occurrence of good antibacterial effect of myrtle oils when administered alone. Using checkerboard method, the combinations of subinhibitory concentrations of myrtle essential oils and conventional antibiotics, i.e. polymixin B and ciprofloxacine were examined. The results proved synergism among M. communis L. essential oils and both antibiotics against MDR A. baumannii wound isolates, with a FIC index under or equal 0.50. Combination of subinhibitory concentrations of essential oils and ciprofloxacin most frequently reduced bacterial growth in synergistic manner. The similar has been shown for combination with polymyxin B; furthermore, the myrtle essential oil resulted in re-sensitization of the MDR wound isolates, i.e. MICs used in combination were below the cut off for the sensitivity to the antibiotic. Time-kill curve method confirmed efficacy of myrtle essential oil and polymyxin B combination, with complete reduction of bacterial count after 6 h. The detected synergy offers an opportunity for future development of treatment strategies for potentially lethal wound infections caused by MDR A. baumannii.  相似文献   

11.
作者研究团队先前从酸枣果的氯仿提取物中精制得到其低极性范围的活性组合物Fr.2a,发现Fr.2a与多种抗生素联用显示出广泛的协同抗菌作用。该研究在Fr.2a的基础上利用硅胶柱层析对酸枣果氯仿提取物中其他极性范围内的活性成分进行了分离纯化,得到精制物Fr.B,并对精制物Fr.B进行GC MS、核磁共振氢谱、红外光谱分析,以确定Fr.B的组成成分;通过抗菌谱分析和细胞通透性分析,以明确Fr.B的抗菌增效谱和抗菌增效机制;采用熔和法将精制物Fr.B制备成软膏,通过小鼠伤口感染模型评价该软膏对抗生素的增效效果。结果表明:(1)由酸枣果氯仿提取物进一步精制得到的Fr.B组分,主要包含反油酸、油酸、顺 10 十六碳烯醇、棕榈酸等脂肪酸类化合物。(2)Fr.B分别与庆大霉素、妥布霉素、氨苄青霉素、氯霉素、红霉素、夫西地酸、制霉菌素、酮康唑和两性霉素B等多种抗生素联用时显示出广泛的协同抗菌作用。(3)Fr.B可破坏细胞膜和细胞壁的完整性而增强细菌细胞的通透性。(4)在体内和体外Fr.B均能显著增强红霉素对耐甲氧西林金黄色葡萄球菌(MRSA)的杀菌作用,从而提高红霉素对MRSA菌株引起的伤口感染的治疗效果。研究表明,本研究所得到的Fr.B具有广谱的抗菌增效活性,能够增强红霉素对伤口耐药菌感染的治疗效果。该研究结果为克服微生物对抗生素的耐药性提供了新的思路和解决方案。  相似文献   

12.
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from l-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics.  相似文献   

13.
Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens  相似文献   

14.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.  相似文献   

15.
Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline’s antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA—the enzyme that catalyzes the first step of peptidoglycan biosynthesis—over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC50 of 480?μM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.  相似文献   

16.

Background

Staphylococci can cause wound infections and community- and nosocomial-acquired pneumonia, among a range of illnesses. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) have been rapidly increasing as a cause of infections worldwide in recent decades. Numerous reports indicate that S. aureus and MRSA are becoming resistant to many antibiotics, which makes them very dangerous. Therefore, this study retrospectively investigated the resistance to antimicrobial agents in all hospitalized patients suffering from community- or nosocomial-acquired pneumonia due to S. aureus and MRSA.

Methods

Information from the study groups suffering from either community- or nosocomial-acquired pneumonia caused by S. aureus or MRSA was gathered by searching records from 2004 to 2014 at the HELIOS Clinic Wuppertal, Witten/Herdecke University, Germany. The findings of antibiotic resistance were analyzed after the evaluation of susceptibility testing for S. aureus and MRSA.

Results

Total of 147 patients (63.9%, 95% CI 57.5%–69.8%), mean age 67.9 ± 18.5 years, with pneumonia triggered by S. aureus, and 83 patients (36.1%, 95% CI 30.2%–42.5%), mean age 72.3 ± 13.8 years, with pneumonia due to MRSA. S. aureus and MRSA developed no resistance to vancomycin (P = 0.019 vs. < 0.0001, respectively) or linezolid (P = 0.342 vs. < 0.0001, respectively). MRSA (95.3%) and S. aureus (56.3%) showed a high resistance to penicillin. MRSA (87.7%) was also found to have a high antibiotic resistance against ß-lactam antibiotics, compared to S. aureus (9.6%). Furthermore, MRSA compared to S. aureus, respectively, had increased antibiotic resistance to ciprofloxacin (90.1% vs. 17.0%), cefazolin (89.7% vs. 10.2%), cefuroxime (89.0% vs. 9.1%), levofloxacin (88.2% vs. 18.4%), clindamycin (78.0% vs. 14.7%), and erythromycin (76.5% vs. 20.8%).

Conclusion

No development of resistance was found to vancomycin and linezolid in patients with pneumonia caused by S. aureus and MRSA.  相似文献   

17.
Honey is a powerful antimicrobial agent with a wide range of effects. Various components contribute to the antibacterial efficacy of honey: the sugar content; polyphenol compounds; hydrogen peroxide; 1,2-dicarbonyl compounds; and bee defensin-1. All of these elements are present at different concentrations depending on the source of nectar, bee type, and storage. These components work synergistically, allowing honey to be potent against a variety of microorganisms including multidrug resistant bacteria and modulate their resistance to antimicrobial agents. The effectiveness and potency of honey against microorganisms depends on the type of honey produced, which is contingent on its botanical origin, the health of the bee, its origin, and processing method. The application of antibiotics with honey yielded better antimicrobial potential and synergistic effects were noted against biofilms. In medicine, honey has been used in the treatment of surface wounds, burns, and inflammation, and has a synergistic effect when applied with antibiotics. Tissue repair is enhanced by the low pH of honey (3.5–4): causing a reduction in protease activity on the wound site, elevating oxygen release from hemoglobin and stimulating fibroblast and macrophage activity. Furthermore, H2O2 has antiseptic effects, and it disinfects the wound site and stimulates production of vascular endothelial growth factor. The use of honey will clean wounds or burn areas from free radicals and reduces scarring and contractures. The anti-inflammatory and antibacterial potential of honey will keep the injured area moist and as such prevents it from deterioration and fibrosis. Honey can promote fast healing and reduce scarring and is very convenient for plastic surgery. Skin maceration is protected by honey due to its high osmolarity and because it keeps the injury moist. In non-infected areas, honey still reduced pain and inflammation. In general, the use of honey in medical settings has reduced economic loss and provided proven economic benefits by lowering direct costs in comparison to conventional treatments and by using less antibiotics, faster healing and less hospitalization stay. This review is intended to provide an overview of the antibacterial activities of honey and its applications.  相似文献   

18.
Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87–89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We demonstrated that plectasin strongly rejuvenates the therapeutic potencies of existing antibiotics in vitro and in vivo. This is a novel strategy that can have major clinical implications in our fight against bacterial infections.  相似文献   

19.
Staphylococcus aureus is one of the major causes of community and hospital-acquired infections. Bacteriophage considered as a major risk factor acquires S. aureus new virulence genetic elements. A total number of 119 S. aureus isolated from different specimens obtained from (RKH) were distinguished by susceptibility to 19 antimicrobial agents, phage typing, and PCR amplification for mecA gene. All of MRSA isolates harbored mecA gene, except three unique isolates. The predominant phage group is belonging to the (mixed group). Phage group (II) considered as an epidemiological marker correlated to β-lactamase hyper producer isolates. MRSA isolates indicated high prevalence of phage group (II) with highly increase for phage types (Ø3A), which were correlated to the skin. Phage types (Ø80/Ø81) played an important roll in Community Acquired Methicillin Resistant S. aureus (CAMRSA). Three outpatients MRSA isolates had low multiresistance against Bacitracin (Ba) and Fusidic acid (FD), considered as CAMRSA isolates. It was detected that group I typed all FD-resistant MSSA isolates. Phage groups (M) and (II) were found almost to be integrated for Gentamycin (GN) resistance especially phage type (Ø95) which relatively increased up to 20% in MRSA. Tetracycline (TE) resistant isolates typed by groups (II) and (III) in MSSA. Only one isolate resistant to Sulphamethoxazole/Trimethoprim (SXT) was typed by (III/V) alone in MSSA. MRSA isolates resistant to Chloramphenicol (C) and Ba were typed by all groups except (V). It could be concluded that (PERSA) S. aureus isolates from the wound that originated and colonized, and started to build up multi-resistance against the topical treatment antibiotics. In this study, some unique sporadic isolates for both MRSA and MSSA could be used as biological, molecular and epidemiological markers such as prospective tools.  相似文献   

20.
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号