首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Pulmonary maturation in 8 ovine fetuses bilaterally adrenalectomized at 98-101 days and infused at term with either ACTH1-24 or cortisol was compared with that in 4 untreated sham-operated controls. Four of the adrenalectomized fetuses were infused intravascularly with ACTH1-24 5 micrograms/h for 84 h before delivery and the other four were infused with cortisol 1 mg/h for 72 h. The high plasma concentrations of immunoreactive ACTH in the adrenalectomized fetuses (2762 +/- 1339 ng/l, mean +/- SD) were not significantly elevated by infusion of ACTH1-24 but were markedly depressed by infusion of cortisol. Distensibility (V40) of the lungs was less than that of controls in both the ACTH1-24-infused and cortisol-infused fetuses (1.86 +/- 0.31 ml/g vs 0.62 +/- 0.13 ml/g and 1.27 +/- 0.34 ml/g respectively) but it was significantly greater in the cortisol-infused fetuses compared to those infused with ACTH1-24. The volume of air retained at 5 cm H2O pressure (V5) during deflation was markedly reduced in adrenalectomized fetuses (controls 1.14 +/- 0.52 ml/g vs 0.25 +/- 0.25 ml/g and 0.12 +/- 0.6 ml/g). The wet weight of the lungs and the concentrations of saturated phosphatylcholine in lung tissue and lavage fluid were lower in the adrenalectomized fetuses than in controls but the differences were not significant. It is concluded that infusion of ACTH1-24 at term in adrenalectomized fetuses is probably without effect whereas cortisol enhances distensibility.  相似文献   

2.
We investigated whether leptin can suppress the prepartum activation of the fetal hypothalamus-pituitary-adrenal (HPA) axis and delay the timing of parturition in the sheep. First, we investigated the effects of a 4-day intravascular infusion of recombinant ovine leptin (n = 7) or saline (n = 6) on fetal plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations, starting from 136 days gestation (i.e., at the onset of the prepartum activation of the fetal HPA axis. The effects of a continuous intrafetal infusion of leptin (n = 7) or saline (n = 5) from 144 days gestation on fetal plasma ACTH and cortisol concentrations and the timing of delivery were also determined in a separate study. There was an increase in fetal plasma ACTH (P < 0.01) and cortisol (P < 0.001) concentrations when saline was infused between 136-137 and 140-141 days gestation. Plasma ACTH and cortisol concentrations did not rise, however, when leptin was infused during this period of gestation. When leptin was infused after 144 days gestation, there was no effect of a 4- to 5-fold increase in circulating leptin on fetal ACTH concentrations. In contrast, leptin infusion from 144 days gestation suppressed (P < 0.05) fetal plasma cortisol concentrations by around 40% between 90 and 42 h before delivery. There was no difference, however, in the length of gestation between the saline- and leptin-infused groups (saline infused, 150.2 +/- 0.5 days; leptin infused, 149.8 +/- 1.0 days). In saline-infused fetuses, there was a significant negative relationship between the plasma concentrations of cortisol (y) and leptin (x) between 138 and 146 days gestation (y = 81.4 - 7.7x, r = 0.38, P < 0.005). This study provides evidence for an endocrine negative feedback loop between leptin and the HPA axis in fetal life.  相似文献   

3.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

4.
PGE2 (2 micrograms/min) has been infused for 1h into the fetal jugular vein of 8 chronically catheterized fetuses on 13 occasions from 112 to 138 days gestation. Infusion of ethanol vehicle alone was conducted in fetuses from 111-139 days gestation. PGE2 administration produced a significant increase in fetal plasma cortisol after 30 min. No significant change was observed in fetal plasma prolactin concentration. Fetal plasma ACTH concentration was significantly elevated above resting concentration after 30 min. of PGE2 infusion. Metabolic clearance rate of PGE2 was 860 ml/min or 350 ml/kg/min. Intrauterine pressure was not changes during the infusion at any gestational age.  相似文献   

5.
It is not clear if an increase in intra-adrenal cortisol is required to mediate the actions of adrenocorticotropic hormone (ACTH) on adrenal growth and steroidogenesis during the prepartum stimulation of the fetal pituitary-adrenal axis. We infused metyrapone, a competitive inhibitor of cortisol biosynthesis, into fetal sheep between 125 and 140 days of gestation (term = 147 +/- 3 days) and measured fetal plasma cortisol, 11-desoxycortisol, and ACTH; pituitary pro-opiomelanocortin mRNA and adrenal expression of ACTH receptor (melanocortin type 2 receptor), steroidogenic acute regulatory protein (StAR), 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), cytochrome P450 17-hydroxylase (CYP17), 3beta-hydroxysteroid dehydrogenase, and cytochrome P450 21-hydroxylase mRNA; and StAR protein in the fetal adrenal gland. Plasma ACTH and 11-desoxycortisol concentrations were higher (P < 0.05), whereas plasma cortisol concentrations were not significantly different in metyrapone- compared with vehicle-infused fetuses. The ratio of plasma cortisol to ACTH concentrations was higher (P < 0.0001) between 136 and 140 days than between 120 and 135 days of gestation in both metyrapone- and vehicle-infused fetuses. The combined adrenal weight and adrenocortical thickness were greater (P < 0.001), and cell density was lower (P < 0.01), in the zona fasciculata of adrenals from the metyrapone-infused group. Adrenal StAR mRNA expression was lower (P < 0.05), whereas the levels of mature StAR protein (30 kDa) were higher (P < 0.05), in the metyrapone-infused fetuses. In addition, adrenal mRNA expression of 11betaHSD2, CYP11A1, and CYP17 were higher (P < 0.05) in the metyrapone-infused fetuses. Thus, metyrapone administration may represent a unique model that allows the investigation of dissociation of the relative actions of ACTH and cortisol on fetal adrenal steroidogenesis and growth during late gestation.  相似文献   

6.
Although it has been recognized for over a decade that hypothalamic-pituitary disconnection (HPD) in fetal sheep prevents the late gestation rise in plasma cortisol concentrations, the underlying mechanisms remain unclear. We hypothesized that reductions in adrenal responsiveness and ACTH receptor (ACTH-R) expression may be mediating factors. HPD or sham surgery was performed at 120 days of gestation, and catheters were placed for blood sampling. At approximately 138 days of gestation, fetuses were killed, and adrenals were removed for cell culture and analyses of ACTH-R mRNA and protein. After 48 h, adrenocortical cells were stimulated with ACTH for 2 h, and the medium was collected for cortisol measurement. The same cells were incubated overnight with medium or medium containing ACTH or forskolin (FSK), followed by ACTH stimulation (as above) and cortisol and cellular ACTH-R mRNA analyses. HPD prevented the late gestation increase in plasma cortisol and bioactive ACTH and reduced adrenal ACTH-R mRNA and protein levels by over 35%. HPD cells secreted significantly less cortisol than sham cells (3.2 +/- 1.2 vs. 47.3 +/- 11.1 ng.ml(-1).2 h(-1)) after the initial ACTH stimulation. Overnight incubation of HPD cells with ACTH or FSK restored cortisol responses to acute stimulation to levels seen in sham cells initially. ACTH-R mRNA levels in cells isolated from HPD fetuses were decreased by over 60%, whereas overnight incubation with ACTH or FSK increased levels by approximately twofold. Our findings indicate that the absence of the cortisol surge in HPD fetuses is a consequence, at least in part, of decreased ACTH-R expression and adrenal responsiveness.  相似文献   

7.
In previous studies on regulation of fetal adrenocorticotropin (ACTH) secretion, corticotropin releasing factor (CRF) and arginine vasopressin (AVP) have been administered by peripheral intravascular infusion. In order to look at an alternate route of administration, we investigated the effect of continuous intracerebroventricular administration of AVP to the fetus on fetal plasma ACTH and fetal and maternal plasma cortisol concentrations. Sheep fetuses (n = 9) were instrumental with carotid artery and lateral cerebral ventricular catheters. Fetuses were given intracerebroventricular infusion from 125-134 days gestational age of artificial cerebrospinal fluid vehicle (n = 4), or AVP 250 mu U.min-1 continuously in artificial cerebrospinal fluid vehicle (n =5). Fetal blood was obtained daily between 09.00 and 12.00h and 20.00 and 23.00h. Over the infusion period, fetal plasma ACTH and cortisol concentrations in AVP infused fetuses increased (P less than 0.05) compared with the vehicle infused group. Gestation length for the fetuses in the AVP and vehicle infused groups were 139 +/- 4.9 (n =4) and 145 +/- 4.6 (n = 3) days respectively (n.s.). Fetal plasma AVP concentrations in the AVP infused group were not different from the vehicle infused group.  相似文献   

8.
The rise in cortisol in fetal sheep during late pregnancy has been related to increased responsiveness of the adrenal to ACTH. Most reports have suggested that plasma ACTH concentrations rise coincident with or after the prepartum increase in cortisol. To reexamine the relationship of cortisol with basal immunoreactive ACTH (IR-ACTH) throughout the last 40 days of pregnancy and to determine changes in fetal pituitary responsiveness during this time, we measured basal and synthetic ovine corticotrophin-releasing factor (oCRF) (10 ng-10 micrograms) induced rises in ACTH and cortisol in fetal sheep at days 110-115, 125-130, and 135-140 of pregnancy. The fetuses were catheterized on day 105-120 and entered spontaneous labour at greater than 140 days. Basal IR-ACTH (picograms per millilitre +/- SEM) rose from 16.7 +/- 2.9 pg/mL at day 110-115 to 34.8 +/- 8.7 pg/mL at day 141-145. There was a significant effect of time on basal ACTH concentrations with a mean increase of approximately 5 pg ACTH per millilitre of plasma per 5-day sampling interval. Plasma cortisol changed gradually between day 110 and 125 of gestation and then more rapidly to term. At day 110-115 of gestation there was no significant change in plasma ACTH after 10 or 100 ng oCRF, but there was a significant increase in ACTH after 1 microgram of oCRF. Plasma cortisol did not change after any CRF injection. The change in IR-ACTH after oCRF at day 125-130 of gestation was significantly greater than that at day 110-115. Plasma cortisol concentrations were elevated following 1- and 10-micrograms injections of oCRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
These studies test the hypothesis that pregnancy alters the feedback effects of cortisol on stimulated ACTH secretion. Ewes were sham-operated (Sham), or adrenalectomized (ADX) at approximately 108 days gestation and replaced with aldosterone (3 microg x kg(-1) x day(-1)) and with cortisol at either of two doses (ADX + 0.6 and ADX + 1 mg x kg(-1) x day(-1)); ewes were studied during pregnancy and postpartum. Mean cortisol levels produced in ADX ewes were similar to normal pregnant ewes (ADX+1) or nonpregnant ewes (ADX+0.6), respectively. Plasma ACTH concentrations in response to infusion of nitroprusside were significantly increased in the pregnant ADX+0.6 ewes (1,159 +/- 258 pg/ml) relative to pregnant Sham ewes (461 +/- 117 pg/ml) or the ADX+1 ewes (442 +/- 215 pg/ml) or the same ewes postpartum (151 +/- 69 pg/ml). Plasma ACTH concentrations were not significantly different among the groups postpartum. Increasing plasma cortisol to 20-30 ng/ml for 24 h before hypotension produced similar inhibition of ACTH in all groups. Pregnancy appears to decrease the effectiveness of low concentrations of cortisol to inhibit ACTH responses to hypotension.  相似文献   

10.
Previous work from this laboratory demonstrated that the elevation of maternal plasma corticosteroid concentrations during pregnancy is important for the support of fetal development. Reducing ovine maternal plasma cortisol concentrations to nonpregnant levels stimulates homeostatic responses that defend fetal blood volume. The present study was designed to test the hypothesis that chronic decreases or increases in maternal plasma cortisol concentration alter uterine and placental blood flow and morphology. Three groups of pregnant ewes and their fetuses were chronically catheterized and studied: ewes infused with cortisol (1 mg.kg(-1).day(-1); high cortisol), ewes adrenalectomized and underreplaced with cortisol (0.5 mg.kg(-1).day(-1); low cortisol), and control ewes. The normal increment in uterine blood flow between 120 and 130 days was eliminated in the low-cortisol ewes; conversely, uterine blood flow was increased in the high-cortisol group compared with the control group. Fetal arterial blood pressure was increased in the high-cortisol group compared with controls, but there was no increase in fetal arterial pressure from 120 to 130 days of gestation in the low-cortisol group. The fetuses of both low-cortisol and high-cortisol groups had altered placental morphology, with increased proportions of type B placentomes, and overall reduced fetal placental blood flow. The rate of fetal somatic growth was impaired in both low-cortisol and high-cortisol groups compared with the fetuses in the intact group. The results of this study demonstrate that maternal plasma cortisol during pregnancy is an important contributor to the maternal environment supporting optimal conditions for fetal homeostasis and somatic growth.  相似文献   

11.
During acute hypoxemia in fetal sheep the elevation in ACTH concentration in the fetal circulation at days 125-129 is greater than that at term, but similar rises in AVP occur at both times. To examine whether the diminished ACTH response is due to elevated endogenous cortisol, and if there is differential control of ACTH and AVP release in hypoxemia, we infused either vehicle or cortisol (5 micrograms/min) into fetal sheep at days 123-128 for 5 h before and then during a 2-h period of acute hypoxemia (mean PaO2 decrease 8.2 mmHg) without acidemia. During cortisol infusion, plasma cortisol rose to 40-50 ng/ml, similar to values in term fetuses. In vehicle-infused fetuses, cortisol rose from 2.1 to 7.0 ng/ml at +1 to +2 h of hypoxemia. ACTH rose significantly during hypoxemia in the vehicle-infused fetuses, and this response was attenuated by cortisol infusion. In contrast, fetal AVP rose significantly during hypoxemia both in the presence and absence of cortisol infusion. Fetal breathing movements, and electroocular activity decreased during hypoxemia, and these responses were not altered by cortisol. We conclude that cortisol exerts differential negative feedback on ACTH but not on AVP release during hypoxemia. The maintained AVP response may facilitate cardiovascular adjustments of the fetus to hypoxemia even when endogenous cortisol is elevated, such as near term.  相似文献   

12.
We determined whether ACTH1-24, infused into fetal lambs at a rate that is known to cause premature labor, elicits changes in the responsiveness of the fetal adrenal glands, and alters the pattern of corticosteroid output. Plasma cortisol (F), corticosterone (B) and progesterone (P4) were measured during 72 h of infusion of saline or ACTH (10 micrograms/h) beginning on Day 127 of pregnancy. Adrenals were then dispersed into isolated cells, and the output of F, B and P4 after exogenous ACTH determined in vitro. Plasma concentrations of F and B were higher in ACTH-treated fetuses. The increment in F (5-to 7-fold) was greater than that in B (2-fold) such that the F:B ratio in plasma of ACTH-treated fetuses on Days 2 and 3 of infusion was 2.5 times higher than in controls. After 72 h of infusion, the adrenal weights in ACTH-treated fetuses (741 +/- 38 mg, +/- SEM; n = 4) were greater than in the control animals (349 +/- 11 mg). There was a significant effect of ACTH pretreatment in vivo on F output by isolated adrenal cells in vitro. Mean increments in F output after addition of ACTH1-24 (5000 pg/ml) in vitro rose from 368 +/- 235 pg/50,000 cells in controls, to 64,639 +/- 19,875 pg/50,000 cells after ACTH in vivo. There was no significant effect of ACTH in vivo on B output in vitro; the ratio of F:B output, either in the absence or presence of ACTH in vitro, was significantly higher in cells from ACTH-pretreated fetuses. There was a significant effect of in vivo ACTH on in vitro P4 output. After ACTH treatment in vivo there was an increase in the vitro output ratio of F:P4, but no change in the output ratio of B:P4. We conclude that ACTH treatment of the fetal lamb in vivo results in activation of fetal adrenal function, increased fetal adrenal responsiveness to ACTH, and directed corticosteroid biosynthesis towards cortisol. Our results are consistent with an increase in fetal adrenal 17 alpha-hydroxylase activity after ACTH treatment.  相似文献   

13.
The fetal ovine pituitary-adrenal axis plays an important role in the timing of parturition, in fetal lung maturation, and in fetal and neonatal responses to stress. While the ovine pituitary during the last third of gestation (term = 145 days) is capable of secreting immunoreactive ACTH (iACTH) in response to various stimuli, plasma cortisol levels frequently do not reflect the rise in plasma ACTH. Therefore, we examined the relationship between plasma iACTH and steroidogenic ACTH-like activity (bACTH) in a group of immature fetal lambs (Group I: gestational age = 97 +/- 2 days, mean +/- SEM, n = 16) and a group of near-term fetuses (Group II: gestational age = 136 +/- 1 days, n = 13) following acute exteriorization. Plasma iACTH was determined by RIA. Plasma bACTH was determined by the ability of glass-extracted material to stimulate corticosterone (B) production in an acutely dispersed rat adrenal bioassay. Plasma iACTH and bACTH levels varied among animals within age groups, with iACTH tending to be higher in immature fetal lambs (Group I) than near-term lambs (Group II) and bACTH being higher (P < 0.05) near term than earlier (Group I: iACTH = 807 +/- 273 pg/ml, bACTH = 173 +/- 44 pg/ml; Group II: iACTH = 405 +/- 85 pg/ml, bACTH = 371 +/- 96 pg/ml). The proportion of iACTH that had biologic activity (e.g. B/I ratio) was significantly greater in the older than in the younger fetuses (Group II: B/I = 0.862 +/- 0.109; Group I: B/I = 0.462 +/- 0.105 P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
PGE2 (2 μg/min) has been infused for 1h into the fetal jugular vein of 8 chronically catheterized fetuses on 13 occasions from 112 to 138 days gestation. Infusion of ethanol vehicle alone was conducted in fetuses from 111 – 139 days gestation. PGE2 administration produced a significant increase in fetal plasma cortisol after 30 min. No significant change was observed in fetal plasma prolactin concentration. Fetal plasma ACTH concentration was significantly elevated above resting concentration after 30 min. of PGE2 infusion. Metabolic clearance rate of PGE2 was 860 ml/min or 350 ml/kg/min. Intrauterine pressure was not changed during the infusion at any gestational age.  相似文献   

15.
Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130-131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses (n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg x day(-1) x kg(-1) for 10 days), whereas the other group received 0.9% NaCl vehicle (n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140-141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 +/- 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 +/- 3 mmHg and RSNA increased 91 +/- 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 +/- 3 and 56 +/- 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 +/- 2 and 46 +/- 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.  相似文献   

16.
In fetal sheep, plasma concentrations of both adrenocorticotropic hormone (ACTH) and cortisol increase at the end of gestation. The increase in fetal plasma cortisol concentration induces placental 17 alpha-hydroxylase and 17, 20 lyase activities and therefore stimulates the placenta to secrete relatively more estrogen and relatively less progesterone. The resultant increase in the estrogen-to-progesterone ratio is thought to increase uterine contractility and initiate labour. We had previously demonstrated that the efficacy of cortisol-induced suppression of ACTH secretion at the end of gestation was reduced. We hypothesized that cortisol-induced stimulation of placental steroidogenesis promoted the secretion of a steroid hormone which reduced negative feedback efficacy, and therefore allowed both ACTH and cortisol secretion to increase simultaneously. Others had proposed that cortisol stimulates the placental secretion of corticotrophin releasing factor, which might also stimulate fetal ACTH secretion. This study was designed to test the hypotheses that cortisol reduces its own feedback efficacy or stimulates CRF secretion. Five pregnant ewes with twin pregnancies were studied after chronic catheterization. One fetus was subjected to infusion of hydrocortisone sodium succinate (10 micrograms/min, iv) and the other to infusion of saline. After 5 and 53 h of infusion, each fetus was subjected to a period of hypotension produced by infusion of sodium nitroprusside. The infusion of hydrocortisone sodium succinate decreased plasma progesterone concentrations in the fetal circulation into which the steroid was infused, and in the maternal circulation. Fetal plasma CRF concentrations were increased on the third day of infusion, the day in which the fetuses went into labour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In samples from twenty chronically cannulated ovine fetuses the plasma immunoreactive adrenocorticotrophin (ACTH) concentrations were 12.5 +/- 3.2(8), 15.2 +/- 4.1(9) and 21.2 +/- 5.6(8) pg/ml at periods, prior to parturition, of -30 to -35, -25 to -29 and -20 to -24 days respectively. Values are mean +/- SEM (number of samples). These values were not significantly different from each other but were significantly lower (P less than 0.02) than values in the next two age groups -36.0 +/- 4.9(7) pg/ml at -19 to -15 days, and 39.6 +/- 6.6(11) pg/ml at -14 to -9 days. A further significant increase (P less than 0.05) occurred in the -8 to -3 day period, ACTH being 53.9 +/- 5.4(12) pg/ml. On day of delivery two samples had values of 325 and 360 pg/ml. A single injection, intravenously of 1.0 microgram ovine corticotrophin-releasing factor (O-CRF), caused a significant increase in fetal plasma ACTH concentrations in fetuses of -6 to -23 days prior to delivery but not in fetuses -24 to -35 days prior to parturition. The maximum values of ACTH after O-CRF were significantly greater in fetuses -2 to 0 days prior to parturition than in younger fetuses (P less than 0.01). In 6 experiments in 4 fetuses (parturition -1 to -13 days) the effect of 1.0 microgram O-CRF persisted for at least 2.5 h. The results support the hypothesis that the pituitary release of ACTH changes sensitivity to hypothalamic O-CRF at least twice during the last fifth of gestation; an increasing sensitivity is seen as term approaches.  相似文献   

18.
We have investigated whether enkephalin-containing peptides and catecholamines are increased in fetal plasma during periods of reduced uterine blood flow which produce moderate fetal asphyxia (i.e. hypoxemia, hypercapnia and acidemia). Experiments (n = 16) were performed in 11 ewes between 121-139 days gestation. In 8 experiments a clamp placed around the common iliac artery of the ewe was adjusted to produce a 50% reduction in the partial pressure of arterial oxygen (PO2) in fetal plasma for 30 min between 121-125 days gestation (n = 4) and between 131-139 days gestation (n = 4). Control (n = 8) experiments were performed when the arterial clamp was not adjusted. There was no significant effect of asphyxia on fetal plasma noradrenaline concentrations before 126 days gestation. After 130 days gestation during asphyxia, fetal plasma noradrenaline concentrations increased significantly from 2.20 +/- 0.72 pmol/ml (-15 min) to 14.06 +/- 0.75 pmol/ml (+5 min). The fetal adrenaline response to asphyxia did not change with increasing gestational age and after 130 days gestation fetal plasma adrenaline increased significantly from 1.48 +/- 0.46 pmol/ml (-15 min) to 4.05 +/- 1.22 pmol/ml (+10 min). Met-enkephalin-arg6-phe7 immunoreactivity was measurable (25-117 pg/ml) in all pre-experimental fetal sheep plasma samples collected between 121-139 days gestation. There was no specific effect of asphyxia on fetal plasma [Met]-enkephalin-arg6-phe7-IR before 130 days gestation. However after 130 days gestation, there was a significant increase in fetal plasma (Met-enkephalin Arg-6-phe7-IR above baseline values, when compared to control experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Premature induction of delivery in fetuses infused with graded doses of cortisol was brought about in 123.5 +/- 7.7 h (mean +/- SEM, n = 6) after the start of cortisol infusion. This treatment caused a rise in fetal plasma cortisol similar to that observed at normal delivery. Maternal and fetal progesterone and 20 alpha-dihydroprogesterone concentrations decreased to basal levels during infusion of cortisol to the fetus. Induction of premature delivery was delayed or prevented by concomitant treatment of the ewe with progestagen. Maternal intramuscular injection of 100 mg progesterone, 2 times daily, prevented delivery in four of four ewes treated during the time that cortisol was infused into the fetus (11-13 days). Maternal plasma progesterone and 20 alpha-dihydroprogesterone concentrations were maintained during this period, but fetal plasma progesterone concentrations decreased to the same extent as in the fetuses infused with cortisol alone. A single intramuscular injection of 250 mg of medroxyprogesterone acetate to ewes on the day before commencement of infusion of cortisol to the fetus prevented delivery in four of six ewes during the time that cortisol was infused for 9, 13, 14, and 15 days, respectively. One ewe delivered a live lamb at 133.5 h and another at 147.7 h after the start of infusion of cortisol to the fetus. Maternal and fetal plasma cortisol, progesterone, and 20 alpha-dihydroprogesterone concentrations were similar to those observed during infusion of cortisol alone to the fetus. Although fetal cortisol concentrations rose in a similar fashion, and to a similar extent, in all three groups during infusion of cortisol to the fetus, fetal 11-desoxycortisol concentrations only rose above basal levels close to the time of delivery in cortisol-infused fetuses or, in the progestagen-treated groups, when the fetus showed signs of being stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号