首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 96-amino-acid protein that is found associated with the HIV-1 virion. Vpr induces cell cycle arrest at the G(2)/M phase of the cell cycle, and this arrest is followed by apoptosis. We examined the mechanism of Vpr-induced apoptosis and found that HIV-1 Vpr-induced apoptosis requires the activation of a number of cellular cysteinyl aspartate-specific proteases (caspases). We demonstrate that ectopic expression of anti-apoptotic viral proteins, which inhibit caspase activity, and addition of synthetic peptides, which represent caspase cleavage sites, can inhibit Vpr-induced apoptosis. Finally, inhibition of caspase activity and subsequent inhibition of apoptosis results in increased viral expression, suggesting that therapeutic strategies aimed at reducing Vpr-induced apoptosis in vivo require careful consideration.  相似文献   

2.
Mechanism of HIV-1 viral protein R-induced apoptosis   总被引:5,自引:0,他引:5  
The paradigm of HIV-1 infection includes the diminution of CD4(+) T cells, loss of immune function, and eventual progression to AIDS. However, the mechanisms that drive host T cell depletion remain elusive. One HIV protein thought to participate in this destructive cascade is the Vpr gene product. Accordingly, we review the biology of the HIV-1 viral protein R (Vpr) an apoptogenic HIV-1 accessory protein that is packaged into the virus particle. In this review we focus specifically on Vpr's ability to induce host cell apoptosis. Recent evidence suggests that Vpr implements a unique mechanism to drive host cell apoptosis, by directly depolarizing the mitochondria membrane potential. Vpr's attack on the mitochondria results in release of cytochrome c resulting in activation of the caspase 9 pathway culminating in the activation of caspase 3 and the downstream events of apoptosis. Vpr may interact with the adenine nucleotide translocator (ANT) to prompt this cascade. The role of Vpr-induced apoptosis in HIV pathogenesis is considered.  相似文献   

3.
Human immunodeficiency virus, type 1 (HIV-1), vpr gene encodes a 14-kDa virion-associated protein, which exhibits significant effects on human cells. One important property of Vpr is its ability to induce apoptosis during infection. Apoptotic induction is likely to play a role in the pathogenesis of AIDS. However, the pathway of apoptosis is not clearly defined. In this report we investigate the mechanism of apoptosis induced by HIV-1 Vpr using a Vpr pseudotype viral infection system or adeno delivery of Vpr in primary human lymphoid cells and T-cells. With either vector, HIV-1 Vpr induced cell cycle arrest at the G(2)/M phase and apoptosis in lymphoid target cells. Furthermore, we observed that with both vectors, caspase 9, but not caspase 8, was activated following infection of human peripheral blood mononuclear cell with either Vpr-positive HIV virions or adeno-delivered Vpr. Activation of the caspase 9 pathway resulted in caspase 3 activation and apoptosis in human primary cells. These effects were coincident with the disruption of the mitochondrial transmembrane potential and induction of cytochrome c release by Vpr. The Vpr-induced signaling pathway did not induce CD95 or CD95L expression. Bcl-2 overexpressing cells succumb to Vpr-induced apoptosis. These studies illustrate that Vpr induces a mitochondria-dependent apoptotic pathway that is distinct from apoptosis driven by the Fas-FasL pathway.  相似文献   

4.
HIV-1 Vpr is an important contributor to viral pathogenesis. Vpr displays several highly conserved pathogenic activities, including induction of cell cycle G(2) arrest and cell death. The host immune system, in turn, preferentially targets Vpr in an attempt to reduce its pathogenic effects. To identify innate anti-Vpr factors, we performed a genetic search for multicopy suppressors of Vpr-induced G(2) arrest in fission yeast. Several heat-shock proteins were identified in these experiments. Analyses in mammalian cells demonstrated that heatshock proteins HSP27 and HSP70 suppress Vpr-induced G2 arrest. This effect appears to be mediated by an interaction between heat shock proteins and Vpr. These results illustrate another example of antagonistic interactions between the viral and cellular proteins.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G2 arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G2/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G2 arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G2 delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G2/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G2 arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G2 arrest at least in part through a Srk1/MK2-mediated mechanism.  相似文献   

7.
Y Zhao  J Cao  M R O'Gorman  M Yu    R Yogev 《Journal of virology》1996,70(9):5821-5826
The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and expressed in wild-type S. pombe cells, and using these cells, we were able to demonstrate the specific Vpr-induced effects by induction and suppression of vpr gene expression. Induction of HIV-1 vpr gene expression affected S. pombe at the colonial, cellular, and molecular levels. Specifically, Vpr induced small-colony formation, polymorphic cells, growth delay, and cell cycle G2 arrest. Additionally, Vpr-induced G2 arrest appeared to be independent of cell size and morphological changes. The cell cycle G2 arrest correlated with increased phosphorylation of p34cdc2, suggesting negative regulation of mitosis by HIV-1 Vpr. Treatment of Vpr-induced cell with a protein phosphatase inhibitor, okadaic acid, transiently suppressed cell cycle arrest and morphological changes. This observation implicates possible involvement of protein phosphatase(s) in the effects of Vpr. Together, these data showed that the HIV-1 Vpr-induced cellular changes in S. pombe are similar to those observed in human cells. Therefore, the S. pombe system is suited for further investigation of the HIV-1 vpr gene functions.  相似文献   

8.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.  相似文献   

9.
DNA damage is a universal inducer of cell cycle arrest at the G2 phase. Infection by the human immunodeficiency virus type 1 (HIV-1) also blocks cellular proliferation at the G2 phase. The HIV-1 accessory gene vpr encodes a conserved 96-amino acid protein (Vpr) that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. In the present study, we examined a recently identified DNA damage-signaling protein, the ATM- and Rad3-related protein, ATR, for its potential role in the induction of G2 arrest by Vpr. We show that inhibition of ATR by pharmacological inhibitors, by expression of the dominant-negative form of ATR, or by RNA interference inhibits Vpr-induced cell cycle arrest. As with DNA damage, activation of ATR by Vpr results in phosphorylation of Chk1. This study provides conclusive evidence of activation of the ATR-initiated DNA damage-signaling pathway by a viral gene product. These observations are important toward understanding how HIV infection promotes cell cycle disruption, cell death, and ultimately, CD4+ lymphocyte depletion.  相似文献   

10.
Yuan H  Kamata M  Xie YM  Chen IS 《Journal of virology》2004,78(15):8183-8190
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle arrest at the G(2)/M transition and subsequently apoptosis. Here we examined the potential involvement of Wee-1 in Vpr-induced G(2) arrest. Wee-1 is a cellular protein kinase that inhibits Cdc2 activity, thereby preventing cells from proceeding through mitosis. We previously showed that the levels of Wee-1 correlate with Vpr-mediated apoptosis. Here, we demonstrate that Vpr-induced G(2) arrest correlated with delayed degradation of Wee-1 at G(2)/M. Experimental depletion of Wee-1 by a small interfering RNA directed to wee-1 mRNA alleviated Vpr-induced G(2) arrest and allowed apparently normal progression through M into G(1). Similar results were observed when cells were arrested at G(2) following gamma irradiation. Thus, Wee-1 is integrally involved as a key cellular regulatory protein in the signal transduction pathway for HIV-1 Vpr-induced cell cycle arrest.  相似文献   

11.
12.
Macrophages are resistant to HIV cytopathic effects, which contributes to viral persistence and reservoir formation. HIV viral protein R (Vpr) is a potent apoptosis-inducing agent for primary monocytes. Because the biologically active Vpr is found in serum and cerebrospinal fluid of HIV-infected patients, we investigated the apoptotic effect of Vpr on monocyte-derived macrophages and phorbol 12-myristate 13-acetate-activated THP1 macrophages. Our results show that primary monocytes and THP1 cells develop resistance to Vpr-induced apoptosis following differentiation into macrophages. To determine the effect of Vpr on the expression of antiapoptotic proteins, we show that in contrast to the undifferentiated cells, Vpr did not down-regulate the expression of antiapoptotic inhibitors of apoptosis (IAPs) and Bcl2 family members in macrophages, suggesting their involvement in resistance to Vpr-induced apoptosis. However, knocking down Bcl-xL and Mcl-1 proteins induced spontaneous apoptosis with no impact on susceptibility to Vpr-induced apoptosis. In contrast, down-regulation of cellular IAP1 (cIAP1) and cIAP2 by using siRNAs and SMAC (second mitochondria-derived activator of caspases) mimetic sensitized macrophages to Vpr-induced apoptosis. Overall, our results suggest that resistance to Vpr-induced apoptosis is specifically mediated by cIAP1/2 genes independent of Bcl-xL and Mcl-1, which play a key role in maintaining cell viability. Moreover, IAP modulation may be a potential strategy to eliminate HIV persistence in macrophages.  相似文献   

13.
Viral protein R (Vpr), an accessory protein of human immunodeficiency virus type 1 (HIV-1), induces the G2 cell cycle arrest in fission yeast for which host factors, such as Wee1 and Rad24, are required. Catalyzing the inhibitory phosphorylation of Cdc2, Wee1 is known to serve as a major regulator of G2/M transition in the eukaryotic cell cycle. It has been reported that the G2 checkpoint induced by DNA damage or incomplete DNA replication is associated with phosphorylation and upregulation of Wee1 for which Chk1 and Cds1 kinase is required. In this study, we demonstrate that the G2 arrest induced by HIV-1 Vpr in fission yeast is also associated with increase in the phosphorylation and amount of Wee1, but in a Chk1/Cds1-independent manner. Rad24 and human 14-3-3 appear to contribute to Vpr-induced G2 arrest by elevating the level of Wee1 expression. It appears that Vpr could cause the G2 arrest through a mechanism similar to, but distinct from, the physiological G2 checkpoint controls. The results may provide useful insights into the mechanism by which HIV-1 Vpr causes the G2 arrest in eukaryotic cells. Vpr may also serve as a useful molecular tool for exploring novel cell cycle control mechanisms.  相似文献   

14.
Caspases play important roles in the initiation and progression of apoptosis. In experimental models of ATP depletion, we have demonstrated the activation of caspase-9, -8, and -3, which is followed by the development of apoptotic morphology. To determine the specific contribution of caspase-9 to ATP depletion-induced apoptosis, we transfected renal epithelial cells with its endogenous dominant-negative inhibitor caspase-9S. Two cell clones with stable transfection were obtained. These clones expressed caspase-9S, and the cytosol isolated from these cells was resistant to cytochrome c-induced caspase activation in vitro. The clones were then examined for ATP depletion-induced apoptosis. Compared with the wild-type cells, the caspase-9S clones were markedly resistant to apoptosis in this model. Caspase activation was also inhibited. Surprisingly, these clones also showed significantly less cytochrome c release during ATP-depletion. Moreover, Bax translocation to mitochondria was inhibited, suggesting that these clones were resistant to apoptosis not only at the cytosolic caspase activation level but also at the upstream mitochondrial level. To gain insights into the mitochondrial resistance, we analyzed the expression of Bcl-2 family proteins. While the expression of Bax, Bak, and Bcl-2 was comparable to the wild-type cells, the selected clones showed specific up-regulation of Bcl-XL, an anti-apoptotic protein. We conclude that the selected clones were resistant to apoptosis at two levels. In the cytosol, they expressed dominant negative caspase-9, and at the mitochondria they up-regulated Bcl-XL.  相似文献   

15.
16.
Anti-vpr activities of heat shock protein 27   总被引:2,自引:0,他引:2  
HIV-1 Vpr plays a pivotal role in viral pathogenesis and is preferentially targeted by the host immune system. In this report, we demonstrate that a small heat shock protein, HSP27, exhibits Vpr-specific antiviral activity, as its expression is specifically responsive to vpr gene expression and increased levels of HSP27 inhibit Vpr-induced cell cycle G2 arrest and cell killing. We further show that overexpression of HSP27 reduces viral replication in T-lymphocytes in a Vpr-dependent manner. Mechanistically, Vpr triggers HSP27 expression through heat shock factor (HSF) 1, but inhibits prolonged expression of HSP27 under heat-shock conditions. Together, these data suggest a potential dynamic and antagonistic interaction between HIV-1 Vpr and a host cell HSP27, suggesting that HSP27 may contribute to cellular intrinsic immunity against HIV infection.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.  相似文献   

18.
Destruction of CD4+ T cells, the hallmark of AIDS, is caused in part by HIV-1-induced apoptosis of both infected cells and noninfected "bystander" cells. The HIV-1 auxiliary regulatory protein Vpr has been shown to harbor a pro-apoptotic activity that may contribute to cellular and tissue damage during AIDS pathogenesis. The biochemical mechanism of this Vpr function remains unclear. In this report, substitutions of a single amino acid residue Leu64 with Pro, Ala, or Arg are shown to dramatically enhance the pro-apoptotic activity of Vpr, as evidenced by the degradation of cellular DNA into fragments of 200-bp increments. Substitutions of Leu64 with conservative residues have no effect. The pro-apoptotic activity of the VprL64P mutant also requires activation of caspase(s) and is inhibited by the secondary mutation I61A, indicating a high specificity for Vpr-induced apoptosis. Among the three HIV-1 subtypes examined, a subtype B Vpr and an A/G subtype recombinant Vpr have a moderate level of pro-apoptotic activity, whereas a subtype D Vpr has no detectable activity. However, the L64P mutation efficiently enhances the pro-apoptotic potential of the subtype B and subtype D Vpr molecules but not that of the A/G recombinant Vpr. It is hypothesized that Vpr molecules from different HIV-1 subtypes as well as Vpr variants that emerge during HIV-1 infection may have different pro-apoptotic potentials and contribute to the diversity of AIDS pathogenesis.  相似文献   

19.
We have previously shown that expression of HIV-1 vpr in yeast results in cell growth arrest and structural defects, and identified a C-terminal domain of Vpr as being responsible for these effects in yeast.1 In this report we show that recombinant Vpr and C-terminal peptides of Vpr containing the conserved sequence HFRIGCRHSRIG caused permeabilization of CD4+ T lymphocytes, a dramatic reduction of mitochondrial membrane potential and finally cell death. Vpr and Vpr peptides containing the conserved sequence rapidly penetrated cells, co-localized with the DNA, and caused increased granularity and formation of dense apoptotic bodies. The above results suggest that Vpr treated cells undergo apoptosis and this was confirmed by demonstration of DNA fragmentation by the highly sensitive TUNEL assay. Our results, together with the demonstration of extracellular Vpr in HIV infected individuals,2,3 suggest the possibility that extracellular Vpr could contribute to the apoptotic death and depletion of bystander cells in lymphoid tissues4,5 during HIV infection.  相似文献   

20.
Ke H  Pei J  Ni Z  Xia H  Qi H  Woods T  Kelekar A  Tao W 《Experimental cell research》2004,298(2):329-338
Lats2, also known as Kpm, is the second mammalian member of the novel Lats tumor suppressor gene family. Recent studies have demonstrated that Lats2 negatively regulates the cell cycle by controlling G1/S and/or G2/M transition. To further understand the role of Lats2 in the control of human cancer development, we have expressed the protein in human lung cancer cells by transduction of a replication-deficient adenovirus expressing human Lats2 (Ad-Lats2). Using a variety of techniques, including Annexin V uptake, cleavage of PARP, and DNA laddering, we have demonstrated that the ectopic expression of human Lats2 induced apoptosis in two lung cancer cell lines, A549 and H1299. Caspases-3, 7, 8, and 9 were processed in the Ad-Lats2-transduced cells; however, it was active caspase-9, not caspase-8, that initiated the caspase cascade. Inhibitors specific to caspase-3 and 9 delayed the onset of Lats2-mediated apoptosis. Western blot analysis revealed that anti-apoptotic proteins, BCL-2 and BCL-x(L), but not the pro-apoptotic protein, BAX, were downregulated in Ad-Lats2-transduced human lung cancer cells. Overexpression of either Bcl-2 or Bcl-x(L) in these cells lead to the suppression of Lats2-mediated caspase cleavage and apoptosis. These results show that Lats2 induces apoptosis through downregulating anti-apoptotic proteins, BCL-2 and BCL-x(L), in human lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号