首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms by which environmental stress regulates cell cycle progression are poorly understood. In fission yeast, we show that Srk1 kinase, which associates with the stress-activated p38/Sty1 MAP kinase, regulates the onset of mitosis by inhibiting the Cdc25 phosphatase. Srk1 is periodically active in G2, and its overexpression causes cell cycle arrest in late G2 phase, whereas cells lacking srk1 enter mitosis prematurely. We find that Srk1 interacts with and phosphorylates Cdc25 at the same sites phosphorylated by the Chk1 and Cds1 (Chk2) kinases and that this phosphorylation is necessary for Srk1 to delay mitotic entry. Phosphorylation by Srk1 causes Cdc25 to bind to Rad24, a 14-3-3 protein family member, and accumulation of Cdc25 in the cytoplasm. However, Srk1 does not regulate Cdc25 in response to replication arrest or DNA damage but, rather, during a normal cell cycle and in response to nongenotoxic environmental stress.  相似文献   

2.
Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP.  相似文献   

3.
Checkpoint kinases Chk1 and Chk2 are two key components in the DNA damage-activated checkpoint signaling pathways. To distinguish the roles of Chk1 and Chk2 in S and G2 checkpoints after DNA damage, derivatives of the human breast cancer cell line MDA-MB-231 were established that express short hairpin RNAs to selectively suppress Chk1 or Chk2 expression. DNA damage was induced with the topoisomerase I inhibitor SN38 which arrests cells in S or G2 phase depending on concentration. Depletion of Chk1 resulted in loss of S phase arrest upon incubation with SN38, but the cells still arrested in G2. Suppression of Chk2 had no impact on cell cycle arrest, while cells concurrently suppressed for both Chk1 and Chk2 still arrested primarily in G2 suggesting the presence of an alternate checkpoint regulator. One critical target for Chk1 is Cdc25A which is phosphorylated and degraded to prevent cell cycle progression. Cells arrested in G2 in the absence of Chk1/Chk2 still showed regulation of Cdc25A consistent with the action of an alternate kinase. One candidate for an alternate checkpoint kinase is MAPKAPK2 (MK2), yet this kinase was minimally activated by DNA damage and its inhibition did not facilitate either S or G2 progression. Furthermore, we were unable to substantiate the recent observation that the Chk1 inhibitor UCN-01 inhibits MK2. These results show that Chk1, but neither Chk2 nor MK2, is an important regulator of S phase arrest, and suggest that an additional kinase can contribute to the G2 arrest.  相似文献   

4.
Upregulation of survivin by HIV-1 Vpr   总被引:5,自引:0,他引:5  
The human survivin gene belongs to the family of inhibitor of apoptosis proteins (IAP) and is involved in apoptosis inhibition and regulation of cell division. The survivin gene is the only member of the IAP family whose expression is known to be regulated through the cell cycle. Survivin expression reaches the highest levels during the G2/M transition and then is rapidly degraded during the G1 phase. Here we report that the human immunodeficiency virus type 1 (HIV-1) upregulates Survivin expression via survivin promoter transactivation. Vpr, an HIV-1 accessory protein that induces cell cycle arrest in G2/M, is necessary and sufficient for this effect. Blocking Vpr-induced G2/M arrest leads to elimination of the survivin promoter transactivation by Vpr. Our results suggest that Survivin may be actively involved in regulating cell viability during HIV-1 infection.  相似文献   

5.
Zhao RY  Elder RT 《Cell research》2005,15(3):143-149
Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyrl5) on Cdc2, which is phosphorylated by Weel kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two wellcharacterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-Ⅰ) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.  相似文献   

6.
The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5+ CD4+ T cells, which mainly consist of regulatory CD4+ T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5+ CD4+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.  相似文献   

7.
Viral protein R (Vpr), an accessory protein of human immunodeficiency virus type 1 (HIV-1), induces the G2 cell cycle arrest in fission yeast for which host factors, such as Wee1 and Rad24, are required. Catalyzing the inhibitory phosphorylation of Cdc2, Wee1 is known to serve as a major regulator of G2/M transition in the eukaryotic cell cycle. It has been reported that the G2 checkpoint induced by DNA damage or incomplete DNA replication is associated with phosphorylation and upregulation of Wee1 for which Chk1 and Cds1 kinase is required. In this study, we demonstrate that the G2 arrest induced by HIV-1 Vpr in fission yeast is also associated with increase in the phosphorylation and amount of Wee1, but in a Chk1/Cds1-independent manner. Rad24 and human 14-3-3 appear to contribute to Vpr-induced G2 arrest by elevating the level of Wee1 expression. It appears that Vpr could cause the G2 arrest through a mechanism similar to, but distinct from, the physiological G2 checkpoint controls. The results may provide useful insights into the mechanism by which HIV-1 Vpr causes the G2 arrest in eukaryotic cells. Vpr may also serve as a useful molecular tool for exploring novel cell cycle control mechanisms.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

9.
Yuan H  Kamata M  Xie YM  Chen IS 《Journal of virology》2004,78(15):8183-8190
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle arrest at the G(2)/M transition and subsequently apoptosis. Here we examined the potential involvement of Wee-1 in Vpr-induced G(2) arrest. Wee-1 is a cellular protein kinase that inhibits Cdc2 activity, thereby preventing cells from proceeding through mitosis. We previously showed that the levels of Wee-1 correlate with Vpr-mediated apoptosis. Here, we demonstrate that Vpr-induced G(2) arrest correlated with delayed degradation of Wee-1 at G(2)/M. Experimental depletion of Wee-1 by a small interfering RNA directed to wee-1 mRNA alleviated Vpr-induced G(2) arrest and allowed apparently normal progression through M into G(1). Similar results were observed when cells were arrested at G(2) following gamma irradiation. Thus, Wee-1 is integrally involved as a key cellular regulatory protein in the signal transduction pathway for HIV-1 Vpr-induced cell cycle arrest.  相似文献   

10.
HIV-1 viral protein R (Vpr) can induce cell cycle arrest and cell death, and may be beneficial in cancer therapy to suppress malignantly proliferative cell types, such as adult T-cell leukemia (ATL) cells. In this study, we examined the feasibility of employing the HIV-vpr gene, via targeted gene transfer, as a potential new therapy to kill ATL cells. We infected C8166 cells with a recombinant adenovirus carrying both vpr and GFP genes (rAd-vpr), as well as the vector control virus (rAd-vector). G2/M phase cell cycle arrest was observed in the rAd-vpr infected cells. Typical characteristics of apoptosis were detected in rAd-vpr infected cells, including sub-diploid peak exhibition in DNA content assay, the Hoechst 33342 accumulation, apoptotic body formation, mitochondrial membrane potential and plasma membrane integrity loss. The proteomic assay revealed apoptosis related protein changes, exhibiting the regulation of caspase-3 activity indicator proteins (vimentin and Rho GDP-dissociation inhibitor 2), mitochondrial protein (prohibitin) and other regulatory proteins. In addition, the up-regulation of anti-inflammatory redox protein, thioredoxin, was identified in the rAd-vpr infected group. Further supporting these findings, the increase of caspase 3&7 activity in the rAd-vpr infected group was observed. In conclusion, endogenous Vpr is able to kill HTLV-1 transformed C8166 cells, and may avoid the risks of inducing severe inflammatory responses through apoptosis-inducing and anti-inflammatory activities.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein has important functions in advancing HIV pathogenesis via several effects on the host cell. Vpr mediates nuclear import of the preintegration complex, induces host cell apoptosis, and inhibits cell cycle progression at G(2), which increases HIV gene expression. Some of Vpr's activities have been well described, but some functions, such as cell cycle arrest, are not yet completely characterized, although components of the ATR DNA damage repair pathway and the Cdc25C and Cdc2 cell cycle control mechanisms clearly play important roles. We investigated the mechanisms underlying Vpr-mediated cell cycle arrest by examining global cellular gene expression profiles in cell lines that inducibly express wild-type and mutant Vpr proteins. We found that Vpr expression is associated with the down-regulation of genes in the MEK2-ERK pathway and with decreased phosphorylation of the MEK2 effector protein ERK. Exogenous provision of excess MEK2 reverses the cell cycle arrest associated with Vpr, confirming the involvement of the MEK2-ERK pathway in Vpr-mediated cell cycle arrest. Vpr therefore appears to arrest the cell cycle at G(2)/M through two different mechanisms, the ATR mechanism and a newly described MEK2 mechanism. This redundancy suggests that Vpr-mediated cell cycle arrest is important for HIV replication and pathogenesis. Our findings additionally reinforce the idea that HIV can optimize the host cell environment for viral replication.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces apoptosis after cell cycle arrest at the G2 phase in primate cells. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation and results in apoptosis without G2 arrest. Here, we investigated whether this property of Vpr and C81 could be exploited for use as a potential anticancer agent. First, we demonstrated that C81 induced G1 arrest and apoptosis in all tumor cells tested. In contrast, Vpr resulted in G2 arrest and apoptosis in HeLa and 293 T cells. Vpr also suppressed the damaged-DNA-specific binding protein 1 (DDB1) in HepG2 cells, thereby inducing apoptosis without G2 arrest. G2 arrest was restored when DDB1 was overexpressed in cells that also expressed Vpr. Surprisingly, C81 induced G2 arrest when DDB1 was overexpressed in HepG2 cells, but not in HeLa or 293 T cells. Thus, the induction of Vpr- and C81-mediated cell cycle arrest appears to depend on the cell type, whereas apoptosis was observed in all tumor cells tested. Overall, Vpr and C81 have potential as novel therapeutic agents for treatment of cancer.  相似文献   

13.
4-Hydroxynonenal (HNE) has been widely implicated in the mechanisms of oxidant-induced toxicity, but the detrimental effects of HNE associated with DNA damage or cell cycle arrest have not been thoroughly studied. Here we demonstrate for the first time that HNE caused G2/M cell cycle arrest of hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) cells that was accompanied with decreased expression of CDK1 and cyclin B1 and activation of p21 in a p53-independent manner. HNE treatment suppressed the Cdc25C level, which led to inactivation of CDK1. HNE-induced phosphorylation of Cdc25C at Ser-216 resulted in its translocation from nucleus to cytoplasm, thereby facilitating its degradation via the ubiquitin-mediated proteasomal pathway. This phosphorylation of Cdc25C was regulated by activation of the ataxia telangiectasia and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) pathway. The role of HNE in the DNA double strand break was strongly suggested by a remarkable increase in comet tail formation and H2A.X phosphorylation in HNE-treated cells in vitro. This was supported by increased in vivo phosphorylation of H2A.X in mGsta4 null mice that have impaired HNE metabolism and increased HNE levels in tissues. HNE-mediated ATR/Chk1 signaling was inhibited by ATR kinase inhibitor (caffeine). Additionally, most of the signaling effects of HNE on cell cycle arrest were attenuated in hGSTA4 transfected cells, thereby indicating the involvement of HNE in these events. A novel role of GSTA4-4 in the maintenance of genomic integrity is also suggested.  相似文献   

14.
Previous work has established that activation of Mos, Mek, and p42 mitogen-activated protein (MAP) kinase can trigger release from G2-phase arrest in Xenopus oocytes and oocyte extracts and can cause Xenopus embryos and extracts to arrest in mitosis. Herein we have found that activation of the MAP kinase cascade can also bring about an interphase arrest in cycling extracts. Activation of the cascade early in the cycle was found to bring about the interphase arrest, which was characterized by an intact nuclear envelope, partially condensed chromatin, and interphase levels of H1 kinase activity, whereas activation of the cascade just before mitosis brought about the mitotic arrest, with a dissolved nuclear envelope, condensed chromatin, and high levels of H1 kinase activity. Early MAP kinase activation did not interfere significantly with DNA replication, cyclin synthesis, or association of cyclins with Cdc2, but it did prevent hyperphosphorylation of Cdc25 and Wee1 and activation of Cdc2/cyclin complexes. Thus, the extracts were arrested in a G2-like state, unable to activate Cdc2/cyclin complexes. The MAP kinase-induced G2 arrest appeared not to be related to the DNA replication checkpoint and not to be mediated through inhibition of Cdk2/cyclin E; evidently a novel mechanism underlies this arrest. Finally, we found that by delaying the inactivation of MAP kinase during release of a cytostatic factor-arrested extract from its arrest state, we could delay the subsequent entry into mitosis. This finding suggests that it is the persistence of activated MAP kinase after fertilization that allows the occurrence of a G2-phase during the first mitotic cell cycle.  相似文献   

15.
Y Zhao  J Cao  M R O'Gorman  M Yu    R Yogev 《Journal of virology》1996,70(9):5821-5826
The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and expressed in wild-type S. pombe cells, and using these cells, we were able to demonstrate the specific Vpr-induced effects by induction and suppression of vpr gene expression. Induction of HIV-1 vpr gene expression affected S. pombe at the colonial, cellular, and molecular levels. Specifically, Vpr induced small-colony formation, polymorphic cells, growth delay, and cell cycle G2 arrest. Additionally, Vpr-induced G2 arrest appeared to be independent of cell size and morphological changes. The cell cycle G2 arrest correlated with increased phosphorylation of p34cdc2, suggesting negative regulation of mitosis by HIV-1 Vpr. Treatment of Vpr-induced cell with a protein phosphatase inhibitor, okadaic acid, transiently suppressed cell cycle arrest and morphological changes. This observation implicates possible involvement of protein phosphatase(s) in the effects of Vpr. Together, these data showed that the HIV-1 Vpr-induced cellular changes in S. pombe are similar to those observed in human cells. Therefore, the S. pombe system is suited for further investigation of the HIV-1 vpr gene functions.  相似文献   

16.
Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G(2)/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3sigma. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G(2)/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latter's phosphorylation status.  相似文献   

17.
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFα. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.  相似文献   

18.
The fission yeast stress-activated Sty1/Spc1 MAPK pathway responds to a similar range of stresses as do the mammalian p38 and SAPK/JNK MAPK pathways. In addition, sty1(-) cells are sterile and exhibit a G(2) cell cycle delay, indicating additional roles of Sty1 in meiosis and cell cycle progression. To identify novel proteins involved in stress responses, a microarray analysis of the Schizosaccharomyces pombe genome was performed to find genes that are up-regulated following exposure to stress in a Sty1-dependent manner. One such gene identified, srk1(+) (Sty1-regulated kinase 1), encodes a putative serine/threonine kinase homologous to mammalian calmodulin kinases. At the C terminus of Srk1 is a putative MAPK binding motif similar to that in the p38 substrates, MAPK-activated protein kinases 2 and 3. Indeed, we find that Srk1 is present in a complex with the Sty1 MAPK and is directly phosphorylated by Sty1. Furthermore, upon stress, Srk1 translocates from the cytoplasm to the nucleus in a process that is dependent on the Sty1 MAPK. Finally, we show that Srk1 has a role in regulating meiosis in fission yeast; following nitrogen limitation, srk1(-) cells enter meiosis significantly faster than wild-type cells and overexpression of srk1(+) inhibits the nitrogen starvation-induced arrest in G(1).  相似文献   

19.
Tan L  Ehrlich E  Yu XF 《Journal of virology》2007,81(19):10822-10830
Vpr-mediated induction of G2 cell cycle arrest has been postulated to be important for human immunodeficiency virus type 1 (HIV-1) replication, but the precise role of Vpr in this cell cycle arrest is unclear. In the present study, we have shown that HIV-1 Vpr interacts with damaged DNA binding protein 1 (DDB1) but not its partner DDB2. The interaction of Vpr with DDB1 was inhibited when DCAF1 (VprBP) expression was reduced by short interfering RNA (siRNA) treatment. The Vpr mutant (Q65R) that was defective for DCAF1 interaction also had a defect in DDB1 binding. However, Vpr binding to DDB1 was not sufficient to induce G2 arrest. A reduction in DDB1 or DDB2 expression in the absence of Vpr also did not induce G2 arrest. On the other hand, Vpr-induced G2 arrest was impaired when the intracellular level of DDB1 or Cullin 4A was reduced by siRNA treatment. Furthermore, Vpr-induced G2 arrest was largely abolished by a proteasome inhibitor. These data suggest that Vpr assembles with DDB1 through interaction with DCAF1 to form an E3 ubiquitin ligase that targets cellular substrates for proteasome-mediated degradation and G2 arrest.  相似文献   

20.
The vpr sequences from six human immunodeficiency virus type 1 (HIV-1)-infected mother-infant pairs following perinatal transmission were analyzed. We found that 153 of the 166 clones analyzed from uncultured peripheral blood mononuclear cell DNA samples showed a 92.17% frequency of intact vpr open reading frames. There was a low degree of heterogeneity of vpr genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vpr sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Moreover, the infants’ sequences displayed patterns similar to those seen in their mothers. The functional domains essential for Vpr activity, including virion incorporation, nuclear import, and cell cycle arrest and differentiation were highly conserved in most of the sequences. Phylogenetic analyses of 166 mother-infant pairs and 195 other available vpr sequences from HIV databases formed distinct clusters for each mother-infant pair and for other vpr sequences and grouped the six mother-infant pairs’ sequences with subtype B sequences. A high degree of conservation of intact and functional vpr supports the notion that vpr plays an important role in HIV-1 infection and replication in mother-infant isolates that are involved in perinatal transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号