首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Tan HW  Liu GH  Dong X  Lin RQ  Song HQ  Huang SY  Yuan ZG  Zhao GH  Zhu XQ 《PloS one》2011,6(8):e23008
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Apis cerana, the Asiatic cavity-nesting honeybee. We present here an analysis of features of its gene content and genome organization in comparison with Apis mellifera to assess the variation within the genus Apis and among main groups of Hymenoptera. The size of the entire mt genome of A. cerana is 15,895 bp, containing 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes and one control region. These genes are transcribed from both strands and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 83.96% for A. cerana. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. There are a total of 3672 codons in all 13 protein-coding genes, excluding termination codons. The most frequently used amino acid is Leu (15.52%), followed by Ile (12.85%), Phe (10.10%), Ser (9.15%) and Met (8.96%). Intergenic regions in the mt genome of A. cerana are 705 bp in total. The order and orientation of the gene arrangement pattern is identical to that of A. mellifera, except for the position of the tRNA-Ser(AGN) gene. Phylogenetic analyses using concatenated amino acid sequences of 13 protein-coding genes, with three different computational algorithms (NJ, MP and ML), all revealed two distinct groups with high statistical support, indicating that A. cerana and A. mellifera are two separate species, consistent with results of previous morphological and molecular studies. The complete mtDNA sequence of A. cerana provides additional genetic markers for studying population genetics, systematics and phylogeographics of honeybees.  相似文献   

2.
The complete mitochondrial genome of Acanthacorydalis orientalis(McLachlan)was determined and analyzed(GenBank accession number:KF840564).This paper represents the first mitochondrial(mt) genome of the dobsonfly genus Acanthacorydalis.The mt genome is a typical circular DNA of 15 753 bp composed of 37 genes with an A+T content of 76.7%.It has an ancestral gene arrangement of the insect mt genomes.Eleven of the 13 PCGs start with codon ATT and ATG,while several exceptions such as ATA and TTG respectively for atpS and nad\ are also present.Five protein-coding genes end with a single T,while others have a termination codon of TAA or TAG.Most tRNAs are folded into the typical clover-leaf structure except for the trnS 1 whose dihydrouridine arm was a simple loop.The secondary structure of rrnl consists of five structural domains and 50 helices,while the rrns includes three domains and 34 helices.The control region has a stretches of Ts with a length of 22 bp but lacks obvious tandem repeat region.Both Bayesian inference and maximum likelihood(ML) analyses,based on all 13 protein-coding genes and two rRNA genes of the mt genomes,confirm the monophyly of Corydalinae and suggest that Acanthacorydalis,together with Corydalus,which is an endemic dobsonfly genus from the New World,belong to a monophyletic lineage.  相似文献   

3.
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% A+T). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.  相似文献   

4.
Lin RQ  Qiu LL  Liu GH  Wu XY  Weng YB  Xie WQ  Hou J  Pan H  Yuan ZG  Zou FC  Hu M  Zhu XQ 《Gene》2011,480(1-2):28-33
Chicken coccidiosis caused by members of the genus Eimeria causes significant economic losses worldwide. In the present study we sequenced the complete mitochondrial DNA (mtDNA) sequences of six Eimeria species and analyzed features of their gene contents and genome organizations. The complete mt genomes of E. acervulina, E. brunetti, E. maxima, E. necatrix, E. tenella and E. praecox were 6179bp, 6148bp, 6169bp, 6214bp, 6213bp and 6174bp in size, respectively. All of the mt genomes consist of 3 genes for proteins (cox1, cox3, and cytb), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA genes. The organization of the mt genomes is similar to that of Plasmodium, but distinct from Babesia and Theileria. The putative direction of translation for 3 genes (cox1, cox3, and cytb) was the same in all six Eimeria species. The contents of A+T of the mt genomes were 65.35% for E. acervulina, 65.43% for E. brunetti, 64.53% for E. maxima, 65.04% for E. necatrix, 64.98% for E. tenella and 65.59% for E. praecox. The AT bias has a significant effect on both the codon usage pattern and amino acid composition of proteins. Phylogenetic analyses using concatenated nucleotide sequences of the 2 protein-coding genes (cytb and cox1), with three different computational algorithms (Bayesian analysis, maximum parsimony and maximum likelihood), all revealed distinct groups with high statistical support, indicating that the six Eimeria spp. represent six distinct but closely-related species. These data provide novel mtDNA markers for studying the molecular epidemiology and population genetics of the six Eimeria spp., and should have implications for the molecular diagnosis, prevention and control of coccidiosis in domestic chickens.  相似文献   

5.
In the present study, the complete mitochondrial DNA (mtDNA) sequences of the pig nodule worm Oesophagostomum quadrispinulatum were determined for the first time, and the mt genome of Oesophagostomum dentatum from China was also sequenced for comparative analysis of their gene contents and genome organizations. The mtDNA sequences of O. dentatum China isolate and O. quadrispinulatum were 13,752 and 13,681 bp in size, respectively. Each of the two mt genomes comprises 36 genes, including 12 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, but lacks the ATP synthetase subunit 8 gene. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A+T are 75.79% and 77.52% for the mt genomes of O. dentatum and O. quadrispinulatum, respectively. Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), all revealed that O. dentatum and O. quadrispinulatum represent distinct but closely-related species. These data provide novel and useful markers for studying the systematics, population genetics and molecular diagnosis of the two pig nodule worms.  相似文献   

6.
The first complete mitochondrial genome (mitogenome) of Tachinidae Exorista sorbillans (Diptera) is sequenced by PCR-based approach. The circular mitogenome is 14,960?bp long and has the representative mitochondrial gene (mt gene) organization and order of Diptera. All protein-coding sequences are initiated with ATN codon; however, the only exception is Cox I gene, which has a 4-bp ATCG putative start codon. Ten of the thirteen protein-coding genes have a complete termination codon (TAA), but the rest are seated on the H strand with incomplete codons. The mitogenome of E. sorbillans is biased toward A+T content at 78.4?%, and the strand-specific bias is in reflection of the third codon positions of mt genes, and their T/C ratios as strand indictor are higher on the H strand more than those on the L strand pointing at any strain of seven Diptera flies. The length of the A+T-rich region of E. sorbillans is 106?bp, including a tandem triple copies of a13-bp fragment. Compared to Haematobia irritans, E. sorbillans holds distant relationship with Drosophila. Phylogenetic topologies based on the amino acid sequences, supporting that E. sorbillans (Tachinidae) is clustered with strains of Calliphoridae and Oestridae, and superfamily Oestroidea are polyphyletic groups with Muscidae in a clade.  相似文献   

7.
昆虫纲半翅目异翅亚目黾蝽科圆臀大黾蝽 Aquarius paludum ( Fabricius,1794) 已成为生物学研究的理想生物材料之一,为更全面了解其分子生物学特征,本研究测定了圆臀大黾蝽 Aquarius paludum线粒体基因组全序列。该基因组全长15 380 bp,为双链环状 D N A 分子,包含 13 个蛋白编码基因、22 个 tRNA 基因、2 个 rRNA 基因及一个控制区。其基因排序与已报道的其它大部分异翅亚目类群排列方式相同。该基因组基因排列紧密,共观察到 64 bp 基因间隔 ( 除控制区 781 bp 外) 与 33 bp 基因重叠。全基因组 AT 含量为75. 7 % ,而控制区 AT 含量仅为 66. 2 % ,密码子使用也显示出 AT 使用偏好。13 个蛋白编码基因中,除 COⅠ、ND5 使用 TTG 作为起始密码子外,其余使用 ATV。此外,7 个蛋白编码基因使用常规三联终止密码子 TAA,TAG 作为终止密码子,其余以 T 作为终止密码子,下游为同链编码的tRN A 基因。在 tRN A-Ser ( G C T ) 二级结构中,D HU 臂缺失,未形成典型的三叶草结构。  相似文献   

8.
The complete sequence of the Taenia saginata mitochondrial genome was determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The mitochondrial genome was 13,670 bp long, contained 12 protein-coding genes, two ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). It did not encode the atp8 gene. Overlapping regions were found between nad4L and nad4, nad1 and trnN, and cox1 and trnT. The ATG initiation codon was used for 10 protein-coding genes, and the GTG initiation codon was used for the remaining 2 genes (nad4 and atp6). The size of the protein-coding genes of the three human Taenia tapeworms did not vary, except for Taenia solium nad1 (891 aa) and nad4 (1212 aa) and Taenia asiatica cox2 (576 aa). The tRNA genes were 57-75 bp long, and the predicted secondary structures of 18 of these genes had typical clover-leaf shapes with paired dihydrouridine (DHU) arms. The genes in all human Taenia tapeworms for the two mitochondrial rRNA subunits rrnL and rrnS are separated by trnC. The putative T. saginata rrnL and rrnS are 972 and 732 bp long, respectively. The non-coding regions of the mt genome of T. saginata consisted of 2 regions: a short non-coding region (SNR, 66 nucleotides) and a long non-coding region (LNR, 159 nucleotides). The overall sequence difference in the full mitochondrial genome between T. saginata and T. asiatica was 4.6%, while T. solium differed by 11%. In conclusion, the complete sequence of the T. saginata mitochondrial genome will serve as a resource for comparative mitochondrial genomics and systematic studies of the parasitic cestodes.  相似文献   

9.
Tian LL  Sun XY  Chen M  Gai YH  Hao JS  Yang Q 《动物学研究》2012,33(2):133-143
对残锷线蛱蝶(Parathymasulpitia)(鳞翅目:蛱蝶科)线粒体基因组全序列进行了测定。结果表明:残锷线蛱蝶线粒体基因组全序列全长为15268bp,除了在trnS1(AGN)和trnE基因之间有一段121bp长的基因间隔外,其基因的排列顺序及排列方向与大多数已测鳞翅目物种基本一致。在蛋白质编码基因中,除cox1以CGA作为其起始密码子之外,其余12个蛋白质编码基因都以标准的ATN作为起始密码子。此外,除nad4基因以单独的T为终止密码子,其余12个蛋白质编码基因都以TAA结尾。除trnS1(AGN)缺少DHU臂之外,22个tRNA基因都显示典型的三叶草形二级结构。除A+T富集区外的非编码序列中,线粒体基因组共含有11个基因间隔区。其中,最长的一个121bp的基因间隔区位于trnS1(AGN)和trnE之间,其A+T含量高达100%。另外,和其他鳞翅目物种一样,在其A+T富集区的3’端有一段长达18bp的poly-T结构。A+T富集区内部没有明显的小卫星样多拷贝重复序列,而含有一些微卫星样的重复结构。本研究基于13种蛋白编码基因序列的组合数据,用最大似然法和贝叶斯法对蛱蝶科几个主要亚科间共9个代表物种间的系统发生关系进行了分析。结果表明,本研究的结果与前人的分子系统学研究结论基本吻合(其中,线蛱蝶亚科和釉蛱蝶亚科互为姐妹群),而与形态学的研究结论不一致。  相似文献   

10.
苹果叶绿体基因组特征分析   总被引:2,自引:0,他引:2  
苹果(Malus×domestica)是最重要的温带水果之一。为了能更好的了解本种的分子生物学基础.对已发布的苹果叶绿体全基因组序列进行了结构特征分析。结果显示苹果的叶绿体基因组全长为160068bp,具有典型的被子植物叶绿体基因组的环状四分体结构,包含大单拷贝区(LSC),小单拷贝区(SSC)和两个反向互补重复区(IRs),长度分别为88184bp,19180bp和26352bp。基因组共有135个基因(20个基因分布在反向互补重复区,因此整个基因组包含115个不同的基因)。按照功能进行分类,这115个基因包括81个蛋白质编码基因,4个rRNA编码基因和30个tRNA基因。其中,ycf15.ycf68和infA三个基因包含多个终止密码子,推测可能为假基因。苹果的基因组结构.基因顺序.GC含量和密码子使用偏好均与典型的被子植物叶绿体基因组类似。在苹果的叶绿体基因组中,共检测到30个大于30bp的重复序列,其中包括21串联重复,6个正向重复和3个反向重复序列;并检测到237个简单重复序列(SSR)位点,大部分的SSR位点都偏向于A或者T组成。此外,每10000bp非编码区平均分布有24个SSR位点,而编码区平均有5个SSR位点,表明SSRs在叶绿体基因组上的分布是不均匀的。本文对苹果叶绿体基因组序列特征的报道,将有助于促进该种的居群遗传学、系统发育和叶绿体基因工程的研究。  相似文献   

11.
Bunostomum trigonocephalum and Bunostomum phlebotomum are blood-feeding hookworms of sheep and cattle, causing considerable economic losses to the live stock industries. Studying genetic variability within and among hookworm populations is critical to addressing epidemiological and ecological questions. Mitochondrial (mt) DNA is known to provide useful markers for investigations of population genetics of hookworms, but mt genome sequence data are scant. In the present study, the complete mitochondrial DNA (mtDNA) sequences of the sheep and goat hookworm B. trigonocephalum were determined for the first time, and the mt genome of B. phlebotomum from yak in China was also sequenced for comparative analyses of their gene contents and genome organizations. The lengths of mt DNA sequences of B. trigonocephalum sheep isolate, B.trigonocephalum goat isolate and B. phlebotomum China yak isolate were 13,764 bp, 13,771 bp and 13,803 bp in size, respectively. The identity of the mt genomes was 99.7% between B. trigonocephalum sheep isolate and B. trigonocephalum goat isolate. The identity of B. phlebotomum China yak isolate mt genomes was 85.3% with B. trigonocephalum sheep isolate, and 85.2% with B. trigonocephalum goat isolate. All the mt genes of the two hookworms were transcribed in the same direction and gene arrangements were consistent with those of the GA3 type, including 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes, but lacking ATP synthetase subunit 8 gene. The mt genomes of B. trigonocephalum and B. phlebotomum were similar to prefer bases A and T, the contents of A + T are 76.5% (sheep isolate), 76.4% (goat isolate) and 76.9% (China yak isolate), respectively. Phylogenetic relationships reconstructed using concatenated amino acid sequences of 12 protein-coding genes with three methods (maximum likelihood, Bayesian inference and neighbor joining) revealed that the B. trigonocephalum and B. phlebotomum represent distinct but closely-related species. These data provide novel and useful genetic markers for studying the systematics, and population genetics of the two ruminant hookworms.  相似文献   

12.
采用LongPCR和引物步移法测得大豆蚜Aphis glycines Matsumura线粒体基因组约90%的序列,并与蚜总科Aphidoidea已报道的3种蚜虫进行了比较。结果表明:已测得的序列长度为13696bp,AT含量为83.3%;蛋白质编码基因起始密码子都为ATN,COI、ND4、CYTB、ND2使用不完整终止密码子T,其余都使用常见终止密码子TAA;15个tRNA基因除tRNA-W外都能折叠成典型的三叶草二级结构。比较大豆蚜、豌豆蚜Acyrthosiphon pisum(Harris)、麦二叉蚜Schizaphis graminum(Rondani)和葡萄根瘤蚜Daktulosphaira vitifoliae(Fitch)的线粒体基因组,结果表明4个种均具有后生动物线粒体基因组中常见的基因,基因顺序与假想昆虫祖先的排列方式相同,但豌豆蚜包含3个tRNA-M;蛋白质编码基因的起始密码子都为ATN,除葡萄根瘤蚜外,其他3种蚜虫的COⅠ、ND4使用不完整终止密码子T;tRNA-W的二级结构中都存在TψC臂中"茎"的结构缺失,只有环的结构;而蛋白质编码基因使用最频繁的氨基酸略有不同,大豆蚜为Leu,豌豆蚜和麦二叉蚜为Ile;大豆蚜和麦二叉蚜的ND4/ND4L都存在7bp的重叠序列,而豌豆蚜和葡萄根瘤蚜没有发现此现象。  相似文献   

13.
Mitochondrial (mt) genome sequences provide useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Although Taenia multiceps, T. hydatigena, and T. taeniaeformis are common taeniid tapeworms of ruminants, pigs, dogs, or cats, causing significant economic losses, no published study on their mt genomes is available. The complete mt genomes of T. multiceps, T. hydatigena, and T. taeniaeformis were amplified in two overlapping fragments and then sequenced. The sizes of the entire mt genome were 13700 bp for T. multiceps, 13489 bp for T. hydatigena, and 13647 bp for T. taeniaeformis. Each of the three genomes contains 36 genes, consisting of 12 genes for proteins, 2 genes for rRNA, and 22 genes for tRNA, which are the same as the mt genomes of all other cestode species studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 71.3% for T. multiceps, 70.8% for T. hydatigena, and 73.0% for T. taeniaeformis. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. T. multiceps and T. hydatigena had two noncoding regions, but T. taeniaeformis had only one. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes revealed that T. multiceps, T. hydatigena, and T. taeniaeformis were more closely related to the other members of the Taenia genus, consistent with results of previous morphological and molecular studies. The present study determined the complete mt genome sequences for three Taenia species of animal and human health significance, providing useful markers for studying the systematics, population genetics, and molecular epidemiology of these cestode parasites of animals and humans.  相似文献   

14.
Xie Y  Zhang Z  Wang C  Lan J  Li Y  Chen Z  Fu Y  Nie H  Yan N  Gu X  Wang S  Peng X  Yang G 《Gene》2011,482(1-2):59-67
Roundworms of the genus Baylisascaris are the most common parasitic nematodes of the intestinal tracts of wild mammals, and most of them have significant impacts in veterinary and public health. Mitochondrial (mt) genomes provide a foundation for studying epidemiology and ecology of these parasites and therefore may be used to assist in the control of Baylisascariasis. Here, we determined the complete sequences of mtDNAs for Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga, with 14,778 bp, 14,657 bp and 14,898 bp in size, respectively. Each mtDNA encodes 12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs, typical for other chromadorean nematodes. The gene arrangements for the three Baylisascaris species are the same as those of the Ascaridata species, but radically different from those of the Spirurida species. Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes from nine nematode species indicated that the three Baylisascaris species are more closely related to Ascaris suum than to the three Toxocara species (Toxocara canis, Toxocara cati and Toxocara malaysiensis) and Anisakis simplex, and that B. ailuri is more closely related to B. transfuga than to B. schroeder. The determination of the complete mt genome sequences for these three Baylisascaris species (the first members of the genus Baylisascaris ever sequenced) is of importance in refining the phylogenetic relationships within the order Ascaridida, and provides new molecular data for population genetic, systematic, epidemiological and ecological studies of parasitic nematodes of socio-economic importance in wildlife.  相似文献   

15.
Human thelaziosis is an underestimated parasitic disease caused by Thelazia species (Spirurida: Thelaziidae). The oriental eyeworm, Thelazia callipaeda, infects a range of mammalian definitive hosts, including canids, felids and humans. Although this zoonotic parasite is of socio-economic significance in Asian countries, its genetics, epidemiology and biology are poorly understood. Mitochondrial (mt) DNA is known to provide useful genetic markers to underpin fundamental investigations, but no mt genome had been characterized for any members of the family Thelaziidae. In the present study, we sequenced and characterized the mt genome of T. callipaeda. This AT-rich (74.6%) mt genome (13,668 bp) is circular and contains 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lacks an atp8 gene. All protein-coding genes are transcribed in the same direction; the gene order is the same as those of Dirofilaria immitis and Setaria digitata (Onchocercidae), but distinct from Dracunculus medinensis (Dracunculidae) and Heliconema longissimum (Physalopteridae). Phylogenetic analyses of the concatenated amino acid sequence data for all 12 protein-coding genes by Bayesian inference (BI) showed that T. callipaeda (Thelaziidae) is related to the family Onchocercidae. This is the first mt genome of any member of the family Thelaziidae and should represent a new source of genetic markers for studying the epidemiology, ecology, population genetics and systematics of this parasite of humans and other mammals.  相似文献   

16.
Termites of the genus Reticulitermes are some of the most significant pests of structural timber and tree farming in the northern hemisphere, causing losses in the billions of dollars annually because of direct damage and termite control costs. This group has been frequently targeted for population genetic, phylogenetic, and species limit studies, most of which use mitochondrial (mt) genes; however, only a small fraction of the genome has been sequenced. The entire mt genome was sequenced for the eastern North American members of Reticulitermes: R. flavipes, R. santonensis, R. virginicus, and R. hageni. The mt genome has the same gene content and organization as that found in most insect species; however, the nucleotide composition and skew are highly biased (AT% low, strong A- and C-skew). Both the protein-coding and transfer RNA genes show high absolute levels of nucleotide substitution, suggesting that the high rates of mutation within Reticulitermes inferred from analyses of single mt genes are a general characteristic of the entire mt genome. The AT-rich or control region has a remarkable structure not previously observed in insect mt genomes. The majority of the control region is made up of 2 sets of repeat units, typically with 2 full and 1 partial copies of both the A (or small; 186 bp) and B (or large; 552 bp) repeats. The partial repeat units overlap by 36 bp. The size, location, and degree of overlap for the partial repeat units correspond to highly conserved stem/loop structures within the repeat units, suggesting that these structures are involved in the replication-mediated processes that govern repeat-unit evolution within mt genomes. Finally, molecular variation within the mt gene regions was compared with previous regions used in molecular diagnostics or phylogenetics of Reticulitermes. High numbers of single nucleotide polymorphisms were found in each of the mt genes, and some of the highest variability was found in gene regions that have not previously been investigated in this group. The whole mt genome sequence can thus be used to predict useful regions for future investigation.  相似文献   

17.
Harvest Mouse (Micromys minutus) has a very wide range of distribution in Asia and Europe. However, the phylogenetic relationship of M. minutus is still uncertain. In this study, we determined the complete mitochondrial (mt) genome sequences of M. minutus, and used the complete mitochondrial genome sequences constructed the phylogenetic tree of Muroidea. The size of the genome is 16,232 bp in length and has a base composition of 33.6% A, 29.1% T, 24.8% C, and 12.5% G. The mitogenome structure was similar to that of typical vertebrate and other rodents' mitochondrial genomes, includes 13 protein-coding genes, 2 rRNA genes (12S rRNA and 16S rRNA), 22 tRNA genes, and 1 control region. We suggested a new initiation codon for ND5 (NADH dehydrogenase subunit), which has been never reported in the mitochondrial genome of vertebrate. The ML and BI phylogenetic trees, which based on the combination of the 12 protein-coding genes, supported strongly that the genus Micromys was represent an early offshoot within the Muridae with high support values (BI = 1.00, ML = 100).  相似文献   

18.
The phylogenetic relationships of primates have been extensively investigated, but key issues remain unresolved. Complete mitochondrial genome (mitogenome) data have many advantages in phylogenetic analyses, but such data are available for only 46 primate species. In this work, we determined the complete mitogenome sequence of the black-capped capuchin (Cebus apella). The genome was 16,538 bp in size and consisted of 13 protein-coding genes, 22 tRNAs, two rRNAs and a control region. The genome organization, nucleotide composition and codon usage did not differ significantly from those of other primates. The control region contained several distinct repeat motifs, including a putative termination-associated sequence (TAS) and several conserved sequence blocks (CSB-F, E, D, C, B and 1). Among the protein-coding genes, the COII gene had lower nonsynonymous and synonymous substitutions rates while the ATP8 and ND4 genes had higher rates. A phylogenetic analysis using Maximum likelihood and Bayesian methods and the complete mitogenome data for platyrrhine species confirmed the basal position of the Callicebinae and the sister relationship between Atelinae and Cebidae, as well as the sister relationship between Aotinae (Aotus) and Cebinae (Cebus/Saimiri) in Cebidae. These conclusions agreed with the most recent molecular phylogenetic investigations on primates. This work provides a framework for the use of complete mitogenome information in phylogenetic analyses of the Platyrrhini and primates in general.  相似文献   

19.
已经测定的昆虫线粒体基因组中, 直翅目草螽亚科的疑钩额螽Ruspolia dubia线粒体控制区长度最短, 仅70 bp。为此, 本研究采用L-PCR结合二次PCR扩增策略对另一种草螽亚科昆虫斑翅草螽Conocephalus maculates线粒体基因组序列进行了测定。序列注释发现: 斑翅草螽线粒体基因组序列全长15 898 bp, A+T含量为72.05%, 基因排列与典型的节肢动物线粒体基因组一致。全部蛋白质编码基因以典型的ATN作为起始密码子, 9个蛋白质编码基因具有完整的终止密码子, 其余4个以不完整的T作为终止信号。除trnSAGN外, 其余21个tRNAs均可折叠形成典型的三叶草结构, 依照Steinberg等(1997)线粒体特殊tRNA结构类型-9, trnSAGN的DHU臂形成一个7 nt环, 反密码子臂则长达9 bp, 含1个突起碱基, 而不是正常的5 bp。斑翅草螽与其他直翅目昆虫线粒体基因组的主要区别在于, 在trnSUCN和nad1, nad1和trnLCUN基因间各存在一段罕见的、大段的基因间隔序列, 长度分别为78 bp和360 bp。其中, 位于nad1和trnLCUN之间的基因间隔序列N链可形成一个包含完整起始、终止密码子(ATT/TAA)、编码103个氨基酸的未知开放阅读框。同义密码子使用偏好与线粒体基因组编码的tRNA反密码子匹配情况无关, 但与密码子第3位点的碱基组成紧密相关; 相对密码子使用频率(relative synonymous codon usage, RSCU)大于1的密码子, 其第3位点全部是A或T。在已经测定的直翅目昆虫线粒体基因组tRNAs中, 均存在一定数量的碱基错配, 且以G-U弱配对为主, 表明G-U配对在线粒体基因组中可能是一种正常的碱基配对形式。本研究测定的斑翅草螽线粒体基因组序列, 和先前已经测定的直翅目线粒体基因组序列一起, 可以为重建直翅目的进化历史提供数据资源。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号