首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transglutaminase 2 (TG2) is an autoantigen in celiac disease (CD) and it has multiple biologic functions including involvement in cell adhesion through interactions with integrins, fibronectin (FN), and heparan sulfate proteoglycans. We aimed to delineate the heparin‐binding regions of human TG2 by studying binding kinetics of the predicted heparin‐binding peptides using surface plasmon resonance method. In addition, we characterized immunogenicity of the TG2 peptides and their effect on cell adhesion. The high‐affinity binding of human TG2 to the immobilized heparin was observed, and two TG2 peptides, P1 (amino acids 202–215) and P2 (261–274), were found to bind heparin. The amino acid sequences corresponding to the heparin‐binding peptides were located close to each other on the surface of the TG2 molecule as part of the α‐helical structures. The heparin‐binding peptides displayed increased immunoreactivity against serum IgA of CD patients compared with other TG2 peptides. The cell adhesion reducing effect of the peptide P2 was revealed in Caco‐2 intestinal epithelial cell attachment to the FN and FN‐TG2 coated surfaces. We propose that TG2 amino acid sequences 202–215 and 261–274 could be involved in binding of TG2 to cell surface heparan sulfates. High immunoreactivity of the corresponding heparin‐binding peptides of TG2 with CD patient's IgA supports the previously described role of anti‐TG2 autoantibodies interfering with this interaction. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Heparan sulfate proteoglycans are critical binding partners for extracellular tranglutaminase-2 (TG2), a multifunctional protein involved in tissue remodeling events related to organ fibrosis and cancer progression. We previously showed that TG2 has a strong affinity for heparan sulfate (HS)/heparin and reported that the heparan sulfate proteoglycan syndecan-4 acts as a receptor for TG2 via its HS chains in two ways: by increasing TG2-cell surface trafficking/externalization and by mediating RGD-independent cell adhesion to fibronectin-TG2 matrix during wound healing. Here we have investigated the molecular basis of this interaction. Site-directed mutagenesis revealed that either mutation of basic RRWK (262-265) or KQKRK (598-602) clusters, forming accessible heparin binding sequences on the TG2 three-dimensional structure, led to an almost complete reduction of heparin binding, indicating that both clusters contribute to form a single binding surface. Mutation of residues Arg(19) and Arg(28) also led to a significant reduction in heparin binding, suggesting their involvement. Our findings indicate that the heparin binding sites on TG2 mainly comprise two clusters of basic amino acids, which are distant in the linear sequence but brought into spatial proximity in the folded "closed" protein, forming a high affinity heparin binding site. Molecular modeling showed that the identified site can make contact with a single heparin-derived pentasaccharide. The TG2-heparin binding mutants supported only weak RGD-independent cell adhesion compared with wild type TG2 or mutants with retained heparin binding, and both heparin binding clusters were critical for TG2-mediated cell adhesion. These findings significantly advance our knowledge of how HS/heparin influences the adhesive function of TG2.  相似文献   

3.

Background

Celiac disease (CD) is an autoimmune gastrointestinal disorder characterized by the presence of anti-transglutaminase 2 (TG2) and anti-gliadin antibodies. Amongst the neurological dysfunctions associated with CD, ataxia represents the most common one.

Methods

We analyzed by immunohistochemistry, the anti-neural reactivity of the serum from 20 CD patients. To determine the role of anti-TG2 antibodies in ataxia, two anti-TG2 single chain variable fragments (scFv), isolated from a phage-display IgA antibody library, were characterized by immunohistochemistry and ELISA, and injected in mice to study their effects on motor coordination. We found that 75% of the CD patient population without evidence of neurological involvement, has circulating anti-neural IgA and/or IgG antibodies. Two anti-TG2 scFvs, cloned from one CD patient, stained blood vessels but only one reacted with neurons. This anti-TG2 antibody showed cross reactivity with the transglutaminase isozymes TG3 and TG6. Intraventricular injection of the anti-TG2 or the anti-TG2/3/6 cross-reactive scFv provoked transient, equally intensive ataxia in mice.

Conclusion

The serum from CD patients contains anti-TG2, TG3 and TG6 antibodies that may potentially cause ataxia.  相似文献   

4.

Background

Celiac disease is an inflammatory condition of the small intestine that affects genetically predisposed individuals after dietary wheat gliadin ingestion. Type 2-transglutaminase (TG2) activity seems to be responsible for a strong autoimmune response in celiac disease, TG2 being the main autoantigen. Several studies support the concept that celiac anti-TG2 antibodies may contribute to disease pathogenesis. Our recent findings on the ability of anti-TG2 antibodies to induce a rapid intracellular mobilization of calcium ions, as well as extracellular signal-regulated kinase phosphorylation, suggest that they potentially act as signaling molecules. In line with this concept, we have investigated whether anti-TG2 antibodies can induce phosphoproteome modification in an intestinal epithelial cell line.

Methods and Principal Findings

We studied phosphoproteome modification in Caco-2 cells treated with recombinant celiac anti-TG2 antibodies. We performed a two-dimensional electrophoresis followed by specific staining of phosphoproteins and mass spectrometry analysis of differentially phosphorylated proteins. Of 14 identified proteins (excluding two uncharacterized proteins), three were hypophosphorylated and nine were hyperphosphorylated. Bioinformatics analyses confirmed the presence of phosphorylation sites in all the identified proteins and highlighted their involvement in several fundamental biological processes, such as cell cycle progression, cell stress response, cytoskeletal organization and apoptosis.

Conclusions

Identification of differentially phosphorylated proteins downstream of TG2-antibody stimulation suggests that in Caco-2 cells these antibodies perturb cell homeostasis by behaving as signaling molecules. We hypothesize that anti-TG2 autoantibodies may destabilize the integrity of the intestinal mucosa in celiac individuals, thus contributing to celiac disease establishment and progression. Since several proteins here identified in this study were already known as TG2 substrates, we can also suppose that transamidating activity and differential phosphorylation of the same targets may represent a novel regulatory mechanism whose relevance in celiac disease pathogenesis is still unexplored.  相似文献   

5.
Dermatitis herpetiformis (DH) is characterized by deposition of IgA in the papillary dermis. However, indirect immunofluorescence is routinely negative, raising the question of the mechanism of formation of these immune deposits. Sárdy et al. (2002. J. Exp. Med. 195: 747-757) reported that transglutaminase-3 (TG3) colocalizes with the IgA. We sought to create such deposits using passive transfer of Ab to SCID mice bearing human skin grafts. IgG fraction of goat anti-TG3 or control IgG were administered i.p. to 20 mice. Separately, sera from seven DH patients and seven controls were injected intradermally. Biopsies were removed and processed for routine histology as well as direct immunofluorescence. All mice that received goat anti-TG3 produced papillary dermal immune deposits, and these deposits reacted with both rabbit anti-TG3 and DH patient sera. Three DH sera high in IgA anti-TG3 also produced deposits of granular IgA and TG3. We hypothesize that the IgA class anti-TG3 Abs are directly responsible for the immune deposits and that the TG3 is from human epidermis, as this is its only source in our model. These deposits seem to form over weeks in a process similar to an Ouchterlony immunodiffusion precipitate. This process of deposition explains the negative indirect immunofluorescence results with DH serum.  相似文献   

6.
Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo-isolated intestinal antibody-secreting cells (ASCs). We found that TG2-specific plasma cells are markedly expanded within the duodenal mucosa in individuals with active celiac disease. TG2-specific antibodies were of high affinity yet showed little adaptation by somatic mutations. Unlike infection-induced peripheral blood plasmablasts, the TG2-specific ASCs had not recently proliferated and were not short-lived ex vivo. Altogether, these observations demonstrate that there is a germline repertoire with high affinity for TG2 that may favor massive generation of autoreactive B cells. TG2-specific antibodies did not block enzymatic activity and served as substrates for TG2-mediated crosslinking when expressed as IgD or IgM but not as IgA1 or IgG1. This could result in preferential recruitment of plasma cells from naive IgD- and IgM-expressing B cells, thus possibly explaining why the antibody response to TG2 bears signs of a primary immune response despite the disease chronicity.  相似文献   

7.
Platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31), a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules with six Ig-like domains, has a range of functions, notably its contributions to leukocyte extravasation during inflammation and in maintaining vascular endothelial integrity. Although PECAM-1 is known to mediate cell adhesion by homophilic binding via domain 1, a number of PECAM-1 heterophilic ligands have been proposed. Here, the possibility that heparin and heparan sulfate (HS) are ligands for PECAM-1 was reinvestigated. The extracellular domain of PECAM-1 was expressed first as a fusion protein with the Fc region of human IgG1 fused to domain 6 and second with an N-terminal Flag tag on domain 1 (Flag-PECAM-1). Both proteins bound heparin immobilized on a biosensor chip in surface plasmon resonance (SPR) binding experiments. Binding was pH-sensitive but is easily measured at slightly acidic pH. A series of PECAM-1 domain deletions, prepared in both expression systems, were tested for heparin binding. This revealed that the main heparin-binding site required both domains 2 and 3. Flag-PECAM-1 and a Flag protein containing domains 1-3 bound HS on melanoma cell surfaces, but a Flag protein containing domains 1-2 did not. Heparin oligosaccharides inhibited Flag-PECAM-1 from binding immobilized heparin, with certain structures having greater inhibitory activity than others. Molecular modeling similarly identified the junction of domains 2 and 3 as the heparin-binding site and further revealed the importance of the iduronic acid conformation for binding. PECAM-1 does bind heparin/HS but by a site that is distinct from that required for homophilic binding.  相似文献   

8.

Purpose

To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation.

Methods

TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study.

Results

We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity.

Conclusions

Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX.  相似文献   

9.
Tumor cell adhesion to the extracellular matrix is an important consideration in tumor metastasis. Recent results show that multiple adhesion-promoting domains for melanoma cells can be purified from proteolytic digests of fibronectin [McCarthy, J. B., Hagen, S. T., & Furcht, L. T. (1986) J. Cell Biol. 102, 179-188]. Monoclonal antibodies were generated against a tryptic/catheptic 33K heparin binding fragment of fibronectin derived from the carboxyl terminal of the A chain. This region contains a tumor cell adhesion-promoting domain(s). The amino-terminal sequence was determined for this fragment, as well as a tryptic 31K fragment which is located to the carboxyl-terminal side of the 33K heparin binding fragment in A chains of fibronectin. The partial sequence data demonstrate that arginyl-glycyl-aspartyl-serine (RGDS) or the related arginyl-glutamyl-aspartyl-valine (REDV) is not present in the 33K heparin binding fragment, confirming earlier results which demonstrated that cells adhere to this fragment by an RGDS-independent mechanism. Two monoclonal antibodies, termed AHB-1 and AHB-2, recognized epitopes common to heparin binding fragments derived from the carboxyl terminus of both the A and B chains of fibronectin. Monoclonal antibody AHB-2 inhibited melanoma adhesion to the 33K heparin binding fragment of fibronectin in a concentration-dependent manner, whereas monoclonal antibody AHB-1 had no effect on adhesion to this fragment. Neither monoclonal antibody inhibited adhesion to intact fibronectin. However, monoclonal AHB-2 potentiated the inhibitory effect of suboptimal levels of exogenous RGDS on cell adhesion to intact fibronectin. AHB-2 recognized an epitope common to both the A- and B-chain carboxyl-terminal heparin binding region of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the α5β1 integrins, but not α4β1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of α5β1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCα and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.  相似文献   

11.
Human immunodeficiency virus (HIV) attachment to host cells is a multi-step process that involves interaction of the viral envelope gp120 with the primary receptor CD4 and coreceptors. HIV gp120 also binds to other cell surface components, including heparan sulfate (HS), a sulfated polysaccharide whose wide interactive properties are exploited by many pathogens for attachment and concentration at the cell surface. To analyze the structural features of gp120 binding to HS, we used soluble CD4 to constrain gp120 in a specific conformation. We first found that CD4 induced conformational change of gp120, dramatically increasing binding to HS. We then showed that HS binding interface on gp120 comprised, in addition to the well characterized V3 loop, a CD4-induced epitope. This epitope is efficiently targeted by nanomolar concentrations of size-defined heparin/HS-derived oligosaccharides. Because this domain of the protein also constitutes the binding site for the viral coreceptors, these results support an implication of HS at late stages of the virus-cell attachment process and suggest potential therapeutic applications.  相似文献   

12.
Tissue transglutaminase (TG2) is a multifunctional Ca(2+)-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 (202)KFLKNAGRDCSRRSSPVYVGR(222). We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.  相似文献   

13.
Infection with various human papillomaviruses (HPVs) induces cervical cancers. Cell surface heparan sulfates (HS) have been shown to serve as primary attachment receptors, and molecules with structural similarity to cell surface HS, like heparin, function as competitive inhibitors of HPV infection. Here we demonstrate that the N,N'-bisheteryl derivative of dispirotripiperazine, DSTP27, efficiently blocks papillomavirus infection by binding to HS moieties, with 50% inhibitory doses of up to 0.4 mug/ml. In contrast to short-term inhibitory effects of heparin, pretreatment of cells with DSTP27 significantly reduced HPV infection for more than 30 h. Using DSTP27 and heparinase, we furthermore demonstrate that HS moieties, rather than laminin 5, present in the extracellular matrix (ECM) secreted by keratinocytes are essential for infectious transfer of ECM-bound virions to cells. Prior binding to ECM components, especially HS, partially alleviated the requirement for cell surface HS. DSTP27 blocks infection by cell-bound virions by feeding into a noninfectious entry pathway. Under these conditions, virus colocalized with HS moieties in endocytic vesicles. Similarly, postattachment treatment of cells with heparinase, cytochalasin D, or neutralizing antibodies resulted in uptake of virions without infection, indicating that deviation into a noninfectious entry pathway is a major mode of postattachment neutralization. In untreated cells, initial colocalization of virions with HS on the cell surface and in endocytic vesicles was lost with time. Our data suggest that initial attachment of HPV to HS proteoglycans (HSPGs) must be followed by secondary interaction with additional HS side chains and transfer to a non-HSPG receptor for successful infection.  相似文献   

14.
Antibodies to the autoantigen transglutaminase 2 (TG2) are a hallmark of celiac disease. We have studied the interaction between TG2 and an anti-TG2 antibody (679-14-E06) derived from a single gut IgA plasma cell of a celiac disease patient. The antibody recognizes one of four identified epitopes targeted by antibodies of plasma cells of the disease lesion. The binding interface was identified by small angle x-ray scattering, ab initio and rigid body modeling using the known crystal structure of TG2 and the crystal structure of the antibody Fab fragment, which was solved at 2.4 Å resolution. The result was confirmed by testing binding of the antibody to TG2 mutants by ELISA and surface plasmon resonance. TG2 residues Arg-116 and His-134 were identified to be critical for binding of 679-14-E06 as well as other epitope 1 antibodies. In contrast, antibodies directed toward the two other main epitopes (epitopes 2 and 3) were not affected by these mutations. Molecular dynamics simulations suggest interactions of 679-14-E06 with the N-terminal domain of TG2 via the CDR2 and CDR3 loops of the heavy chain and the CDR2 loop of the light chain. In addition there were contacts of the framework 3 region of the heavy chain with the catalytic domain of TG2. The results provide an explanation for the biased usage of certain heavy and light chain gene segments by epitope 1-specific antibodies in celiac disease.  相似文献   

15.
Rotavirus infection of permissive cells is a multi-step process that requires interaction with several cell surface receptors. Integrins alpha2beta1, alpha4beta1, alphaXbeta2, and alphavbeta3 are involved in the attachment and entry into permissive cells for many rotavirus strains. However, possible roles of known partners of these integrins in this process have not been studied. Here, the specificities of new monoclonal antibodies directed to beta1 and beta2 integrins were determined using integrin-transfected cells. The ability of monoclonal antibodies to integrin partners CD82, CD151, CD321, and CD322 to bind rotavirus-permissive cell lines (MA104, Caco-2, and RD) and K562 cells expressing or lacking alpha4beta1 also was investigated. CD82 and CD151 were expressed on K562, alpha4-K562, and RD cells. CD321-specific antibodies bound K562, alpha4-K562, MA104, and Caco-2 cells. CD322 expression was detected on MA104 but not Caco-2 cells. Antibodies to CD82, CD151, CD321, and CD322 that bound these cells were investigated for their ability to inhibit cellular attachment and entry by rotaviruses. Antibody blockade of these integrin-associated proteins did not affect cell attachment or entry of the integrin-using rhesus rotavirus RRV or porcine rotavirus CRW-8, which uses alpha4beta1 integrin for infection. Antibody blockade of CD322 did not alter cell attachment or infectivity by human rotavirus strain RV-3, so RV-3 infection was independent of CD322. Overall, these studies indicate that CD82, CD151, CD321, and CD322 are unlikely to play a role in rotavirus-cell binding or entry.  相似文献   

16.
Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.  相似文献   

17.
IgA nephropathy is the most common form of primary glomerulonephritis worldwide. Mucosal infections and food antigens, including wheat gluten, have been proposed as potential contributing environmental factors. Increased immune reactivity to gluten and/or association with celiac disease, an autoimmune disorder triggered by ingestion of gluten, have been reported in IgA nephropathy. However, studies are inconsistent about this association. We aimed to evaluate the proposed link between IgA nephropathy and celiac disease or immune reactivity to gluten by conducting a comprehensive analysis of associated serologic markers in cohorts of well-characterized patients and controls. Study participants included patients with biopsy-proven IgA nephropathy (n = 99), unaffected controls of similar age, gender, and race (n = 96), and patients with biopsy-proven celiac disease (n = 30). All serum specimens were tested for IgG and IgA antibodies to native gliadin and deamidated gliadin, as well as IgA antibody to transglutaminase 2 (TG2). Anti-TG2 antibody-positive nephropathy patients and unaffected controls were subsequently tested for IgA anti-endomysial antibody and genotyped for celiac disease-associated HLA-DQ2 and -DQ8 alleles. In comparison to unaffected controls, there was not a statistically significant increase in IgA or IgG antibody reactivity to gliadin in individuals with IgA nephropathy. In addition, the levels of celiac disease-specific serologic markers, i.e., antibodies to deamidated gliadin and TG2, did not differ between IgA nephropathy patients and unaffected controls. Results of the additional anti-endomysial antibody testing and HLA genotyping were corroborative. The data from this case-control study do not reveal any evidence to suggest a significant role for celiac disease or immune reactivity to gluten in IgA nephropathy.  相似文献   

18.
The matrix attachment region (MAR) is a distinctive genomic DNA involved in a variety of nuclear processes through association with the nuclear matrix. Recent studies suggest that nuclear matrix is altered in the process of apoptosis and presented to the immune system, leading to the production of autoantibodies against its protein components. To see whether MARs are also recognized by autoantibodies, a collection of human sera containing antinuclear antibodies was screened for the presence of binding activities against cloned MARs. We found that MAR-binding activities are quite common in these sera. There was a positive correlation among the MAR-binding titers for three different MAR probes. As expected, the MAR-binding activity was copurified with serum IgG, and subclass analysis with affinity-purified IgG on MAR-Sepharose showed a predominance of IgG2 isotype. Several lines of evidence implied that the anti-MAR antibodies detected here is distinct from the ordinary anti-DNA antibodies that are reactive to bulk DNA.  相似文献   

19.
Purified RNA polymerase I was phosphorylated by the endogenous protein kinase or dephosphorylated by alkaline phosphatase and used as antigen in a radioimmunoassay with sera from systemic lupus erythematosus patients or serum from an immunized rabbit. Enzyme incubated in the absence of ATP or phosphatase served as control. Three to seven times more of the autoantibodies in the patients' sera reacted with phosphorylated RNA polymerase I than with control enzyme. The reactivity of the dephosphorylated enzyme with lupus autoantibodies was only 50-60% of that observed with control enzyme. Neither phosphorylation nor dephosphorylation of the enzyme had an effect on its reaction with the rabbit antibodies. The effect of phosphorylation on the reaction of each RNA polymerase I subunit (S1-S8; Mr = 190,000-17,000) with the patients' antibodies was determined by an immunoblot procedure following resolution of the subunits on polyacrylamide gels. Prior phosphorylation of the enzyme resulted in a dramatic increase in binding of each patient's antibodies to all polymerase subunits with the exception of S4. Anti-S4 antibody was not detected with either phosphorylated or control enzyme. Strikingly, antibodies in each patients' sera reacted with S6 only after its phosphorylation. Similarly, anti-S5 antibodies in the serum of one patient were only detected with phosphorylated RNA polymerase I. The present data suggest that at least a significant fraction of the anti-RNA polymerase I autoantibodies in the sera of systemic lupus erythematosus patients might be directed against phosphorylated sites on the enzyme and that phosphorylation may have a role in the production of this and other autoimmunogenic nuclear components which are hallmarks of this disease.  相似文献   

20.
Tumor cell attachment to thrombospondin (TSP) in the extracellular matrix may be of critical importance in the processes of invasion and hematogenous dissemination. To determine the specific receptor systems that mediate the interaction of tumor cells with insoluble TSP, the attachment of HT1080 fibrosarcoma and C32 and G361 melanoma cells to TSP-coated discs was studied in the presence of heparin, Arg-Gly-Asp-Ser, or antibodies to glycoprotein (GP) IV (CD36, GPIIIb), a TSP receptor. HT1080 and C32 cell attachment to TSP was inhibited by the combination of heparin and a monoclonal (or polyclonal) antibody to GPIV but not by either alone. Heparin alone inhibited cell spreading. Neither control monoclonal antibodies nor the cell attachment peptide Arg-Gly-Asp-Ser inhibited tumor cell attachment to TSP, alone or in the presence of heparin. HT1080 cells attached equally as well to a 140-kDa proteolytic TSP fragment lacking the heparin-binding domain as to intact TSP. A monoclonal antibody to GPIV alone inhibited tumor cell attachment to the heparin-domainless 140-kDa TSP fragment. No attachment to the heparin-binding fragment was observed, but the addition of the heparin fragment to 140-kDa heparin-domainless TSP restored the heparin sensitivity of binding. G361 cells that lack GPIV attached well to TSP but were not inhibited by heparin or anti-GPIV alone or in combination. The combination of heparin and Arg-Gly-Asp-Ser inhibited G361 attachment to TSP. These studies suggest that tumor cells may utilize separate receptor systems in a cooperative manner to adhere to TSP. HT1080 fibrosarcoma and C32 melanoma cells utilize GPIV in concert with a heparin-modulated binding systems to attach and spread on TSP. G361 cells, which lack GPIV expression, attach and spread on TSP using an integrin system as well as a heparin-modulated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号