首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Teesalu K  Panarina M  Uibo O  Uibo R  Utt M 《Amino acids》2012,42(2-3):1055-1064
Autoantibodies from patients with celiac disease (CD) can influence transglutaminase 2 (TG2) activity and its cellular functions, but the exact mechanisms have remained unknown. Our objective was to study whether autoantibodies could modulate TG2 binding to heparin/heparan sulfate (HS) and intestinal epithelial cell attachment to fibronectin-TG2 matrix. Anti-TG2 antibodies were purified by TG2 affinity chromatography from sera of patients with active CD. Serum and antibody effects on TG2 binding to heparin/HS, on transamidase activity of TG2, as well as on Caco-2 cell attachment to fibronectin-TG2 matrix were assessed using microplate assays. Both sera and purified anti-TG2 antibodies from CD patients with high anti-TG2 IgA levels reduced TG2 binding to heparin/HS as compared with those with low anti-TG2 IgA or controls. There was a negative correlation between anti-TG2 IgA levels and TG2 binding to heparin/HS. Treatment of fibronectin-TG2 coated wells with CD patients' sera or purified anti-TG2 antibodies reduced attachment of Caco-2 cells onto the plate as compared with the control samples. The effect of CD patients' antibodies on Caco-2 cell attachment to fibronectin-TG2 matrix occurred independently of the inhibition of cell adhesion by Arg-Gly-Asp sequence containing peptides. Anti-TG2 autoantibodies had no effect on transamidase activity of TG2 in vitro. We suggest that modulation of adhesion function of TG2 by autoantibodies from patients with CD could be related to the inhibition of TG2 binding to HS residues of cell surface proteoglycans and could have possible implications for CD pathogenesis.  相似文献   

2.
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the α5β1 integrins, but not α4β1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of α5β1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCα and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.  相似文献   

3.
Heparan sulfate proteoglycans are critical binding partners for extracellular tranglutaminase-2 (TG2), a multifunctional protein involved in tissue remodeling events related to organ fibrosis and cancer progression. We previously showed that TG2 has a strong affinity for heparan sulfate (HS)/heparin and reported that the heparan sulfate proteoglycan syndecan-4 acts as a receptor for TG2 via its HS chains in two ways: by increasing TG2-cell surface trafficking/externalization and by mediating RGD-independent cell adhesion to fibronectin-TG2 matrix during wound healing. Here we have investigated the molecular basis of this interaction. Site-directed mutagenesis revealed that either mutation of basic RRWK (262-265) or KQKRK (598-602) clusters, forming accessible heparin binding sequences on the TG2 three-dimensional structure, led to an almost complete reduction of heparin binding, indicating that both clusters contribute to form a single binding surface. Mutation of residues Arg(19) and Arg(28) also led to a significant reduction in heparin binding, suggesting their involvement. Our findings indicate that the heparin binding sites on TG2 mainly comprise two clusters of basic amino acids, which are distant in the linear sequence but brought into spatial proximity in the folded "closed" protein, forming a high affinity heparin binding site. Molecular modeling showed that the identified site can make contact with a single heparin-derived pentasaccharide. The TG2-heparin binding mutants supported only weak RGD-independent cell adhesion compared with wild type TG2 or mutants with retained heparin binding, and both heparin binding clusters were critical for TG2-mediated cell adhesion. These findings significantly advance our knowledge of how HS/heparin influences the adhesive function of TG2.  相似文献   

4.
Proteins with affinities for specific glycosaminoglycans (GAC's) were used as probes for testing the potential of cell surface GAG's to mediate cell adhesive responses to extracellular matrices (ECM). Plasma fibronectin (FN) and proteins that bind hyaluronate (cartilage proteo-glycan core and link proteins) or heparan sulfate (platelet factor 4 [PF4]) were adsorbed to inert substrata to evaluate attachment and spreading of several 3T3 cell lines. Cells failed to attach to hyaluronate-binding substrata. The rates of attachment on PF4 were identical to those on FN; however, PF4 stimulated formation of broad convex lamellae but not tapered cell processes fibers during the spreading response. PF4-mediated responses were blocked by treating the PF4-adsorbed substratum with heparin (but not chondroitin sulfate), or alternatively the cells with Flavobacter heparinum heparinase (but not chondroitinase ABC). Heparinase treatment did not inhibit cell attachment to FN but did inhibit spreading. Cells spread on PF4 or FN contained similar Ca2+-independent cell-substratum adhesions, as revealed by EGTA-mediated retraction of their substratum-bound processes. Microtubular networks reorganized in cells on PF4 but failed to extend into the broadly spread lamellae, where fine microfilament bundles had developed. Stress fibers, common on FN, failed to develop on PF4. These experiments indicate that (a) heparan sulfate proteoglycans are critical mediators of cell adhesion and heparan sulfate-dependent adhesion via PF4 is comparable in some, but not all, ways to FN-mediated adhesion, (b) the uncharacterized and heparan sulfate-independent "cell surface" receptor for FN permits some but not all aspects of adhesion, and (c) physiologically compatible and complete adhesion of fibroblasts requires binding of extracellular matrix FN to both the unidentified "cell surface" receptor and heparan sulfate proteoglycans.  相似文献   

5.
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Calpha (PKCalpha) and its subsequent interaction with beta(1) integrin since disruption of PKCalpha binding to beta(1) integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCalpha leading to its association with beta(1) integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.  相似文献   

6.
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.  相似文献   

7.
G J Cole  R Akeson 《Neuron》1989,2(2):1157-1165
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat N-CAM, to identify the region of N-CAM that binds heparan sulfate. The 28 amino acid HBD-1 synthetic peptide was shown to bind both [3H]heparin and dissociated retinal cells. Retinal cells also attach to a substratum of HBD-2 peptide, but fail to bind to a control peptide containing a scrambled amino acid sequence of HBD-2. The HBD-2 peptide also inhibits retinal cell adhesion to N-CAM, demonstrating the physiological importance of the amino acid sequence encoded by the HBD peptide. These data therefore permit the localization of a heparin binding domain to a 17 amino acid region of immunoglobulin-like loop 2.  相似文献   

8.
Heparin/heparan sulfate (HS) plays a key role in cellular adhesion. In this study, we utilized a 12‐mer random Escherichia coli cell surface display library to identify the sequence, which binds to heparin. Isolated insert analysis revealed a novel heparin‐binding peptide sequence, VRRSKHGARKDR, designated as HBP12. Our analysis of the sequence alignment of heparin‐binding motifs known as the Cardin–Weintraub consensus (BBXB, where B is a basic residue) indicates that the HBP12 peptide sequence contains two consecutive heparin‐binding motifs (i.e. RRSK and RKDR). SPR‐based BIAcore technology demonstrated that the HBP12 peptide binds to heparin with high affinity (KD = 191 nM ). The HBP12 peptide is found to bind the cell surface HS expressed by osteoblastic MC3T3 cells and promote HS‐dependent cell adhesion. Moreover, the surface‐immobilized HBP12 peptide on titanium substrates shows significant increases in the osteoblastic MC3T3‐E1 cell adhesion and proliferation. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

10.
The biological activities of the laminin α2 chain LG4–5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and α-dystroglycan. In this study, heparin and α-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4–5 module and using recombinant LG4–5 protein (rec-α2LG4–5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-α2LG4–5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-α2LG4–5 decreased heparin binding activity. When α-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound α-dystroglycan. A2G78 and A2G80 also inhibited α-dystroglycan binding of rec-α2LG4–5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and α-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or α-dystroglycan-mediated biological functions of the laminin α2 chain.  相似文献   

11.
Heparin and heparin‐like molecules are known to modulate the cellular responses to vascular endothelial growth factor‐A (VEGF‐A). In this study, we investigated the likely mechanisms for heparin's influence on the biological activity of VEGF‐A. Previous studies have shown that exogenous heparin's effects on the biological activity of VEGF‐A are many and varied, in part due to the endogenous cell‐surface heparan sulfates. To circumvent this problem, we used mutant endothelial cells lacking cell‐surface heparan sulfates. We showed that VEGF‐induced cellular responses are dependent in part on the presence of the heparan sulfates, and that exogenous heparin significantly augments VEGF's cellular effects especially when endogenous heparan sulfates are absent. Exogenous heparin was also found to play a cross‐bridging role between VEGF‐A165 and putative heparin‐binding sites within its cognate receptor, VEGFR2 when they were examined in isolation. The cross‐bridging appears to be more dependent on molecular weight than on a specific heparin structure. This was confirmed by surface plasmon resonance binding studies using sugar chips immobilized with defined oligosaccharide structures, which showed that VEGF‐A165 binds to a relatively broad range of sulfated glycosaminoglycan structures. Finally, studies of the far‐UV circular dichroism spectra of VEGF‐A165 showed that heparin can also modulate the conformation and secondary structure of the protein. J. Cell. Biochem. 111: 461–468, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The extracellular matrix molecule fibronectin (FN) is a glycoprotein whose major functional property is to support cell adhesion. FN contains at least two distinct cell-binding domains: the central cell-binding domain and the HepII/IIICS region. The HepII region comprises type III repeats 12-14 and contains proteoglycan-binding sites, while the alternatively spliced IIICS segment possesses the major alpha4beta1 integrin-binding sites. Both cell surface proteoglycans and integrins are important for mediating the adhesion of cells to this region of FN. By comparing heparin binding to different recombinant splice variants of the HepII/IIICS region, evidence was obtained for the existence of a novel heparin-binding site in the centre of the IIICS. Site-directed mutagenesis of basic amino acid sequences in this region reduced heparin binding to recombinant HepII/IIICS proteins and, in conjunction with mutations in the HepII region, caused a synergistic loss of activity. Using the H/120 variant of FN, which contains type III repeats 12-15 and the full-length IIICS region, and the H/95 variant of FN, which contains type III repeats 12-15 but lacks the high affinity integrin-binding LDV sequence, the relative roles played by cell-surface proteoglycans and integrins in mediating cell adhesion have been investigated. This was achieved by studying the effects of anti-integrin antibodies and exogenous heparin on A375 melanoma cell attachment to the wild-type and three different mutants of H/120 and H/95 in which the potential proteoglycan-binding sites were partially or completely removed. A375 cell adhesion to H/120 and its mutants was found to involve the co-operative action of both integrin and cell-surface proteoglycan binding, although integrin made a dominant contribution. Anti-integrin antibodies and exogenous heparin were capable of inhibiting melanoma cell adhesion to H/95 and in this case adhesion was due primarily to cell-surface proteoglycan and not integrin binding.  相似文献   

13.
Tissue transglutaminase (TG2) is a multifunctional Ca(2+)-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 (202)KFLKNAGRDCSRRSSPVYVGR(222). We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.  相似文献   

14.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin   总被引:1,自引:0,他引:1  
Fibronectin (FN) is a cell adhesion protein that binds integrins in a process also involving the protein-crosslinking enzyme transglutaminase 2 (TG2) as a co-receptor. The cell-adhesive property of TG2 has been linked to a complex formation with FN and to its ability to crosslink and polymerize FN on the cell surface. We tested here the effects of extracellular FN, before and after in vitro crosslinking and polymerization by TG2, on MC3T3-E1 osteoblast adhesion. We show that TG2-mediated crosslinking creates large, compacted chain-like protein clusters that include both TG2 and FN molecules as analyzed by Western blotting and atomic force microscopy. Crosslinking of FN significantly promotes osteoblast adhesion as measured by crystal violet staining, and enhances β1-integrin clustering on the cell surface as visualized by immunofluorescence microscopy. We hypothesize that TG2-mediated crosslinking enhances the cell-adhesive properties of FN by increasing the molecular rigidity of FN in the extracellular matrix.  相似文献   

16.
Thrombospondin (TSP) mediates sickle erythrocyte adhesion to endothelium, but the mechanism remains unknown. Since TSP is comprised of heterogeneously distinct domains, this adhesion may depend on the interaction of specific regions of TSP with different cell surface receptors. To examine the mechanisms of interaction of TSP with human umbilical vein endothelial cells (HUVEC), we performed binding studies using soluble [125I]TSP. Our data showed that (i) monoclonal antibodies (MoAbs) against cell surface heparan sulfate (HS) or the heparin-binding domain of TSP, or cleavage of HS on HUVEC by heparitinase reduced TSP binding by 28–40%, (ii) the RGD peptide or MoAbs against integrin αvβ3 or the calcium binding region of TSP inhibited binding by 18–28%, and (iii) a MoAb against the cell-binding domain of TSP inhibited binding by 36%. Unmodified heparin inhibited the binding of TSP to endothelial cells by 70% and did so far more effectively than selectively desulfated heparins, HS or chondroitin sulfate. Heparin inhibited TSP binding to HUVEC at much lower concentrations than were required to inhibit TSP binding to sickle erythrocytes. Unmodified heparin effectively inhibited the TSP-mediated adhesion of sickle erythrocytes to HUVEC. These data imply that cell surface HS-mediated mechanisms play a key role in TSP-mediated sickle erythrocyte adhesion to endothelium, and heparin may be of use for inhibition of this adhesion.  相似文献   

17.
Four hybrid materials of RE2O3‐TDI‐Heparin (TDI = Toluene 2,4–diisocyanate, RE = La, Eu, Nd, Sc) were prepared by the method of graft. The materials were characterized by IR, TG, and SEM, which confirmed that the heparin was grafted on the surface of TDI modified rare earth nano‐oxides. The cell adhesion experiment and the anticoagulant experiment demonstrated that the materials have lower cell toxicity, better cell adhesion as well as better anticoagulant action. In addition, the clotting time of hybrid materials were shortened compared with the heparin. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 887–892, 2010.  相似文献   

18.
Given prior evidence that adhesion molecules play critical roles in T cell recognition, it is important to identify new adhesion pathways and explore their role in T cell activation. Our studies of T cell proliferation complement concurrent studies of T cell adhesion; both demonstrate that resting CD4+ human T lymphocytes express the VLA integrins VLA-4, VLA-5, and VLA-6, and can use these receptors to interact with the extracellular matrix (ECM) proteins fibronectin (VLA-4 and VLA-5) and laminin (VLA-6). VLA-dependent interaction of resting human CD4+ T cells with fibronectin (FN) and laminin (LN) facilitates CD3-mediated T cell proliferation. Specifically, T cells do not proliferate in response to a wide range of concentrations of a CD3 mAb, OKT3, immobilized on plastic. However, coimmobilization with the CD3 mAb of FN or LN, but not other ECM proteins such as fibrinogen and collagen, consistently results in strong T cell proliferation. mAb blocking studies demonstrate that three VLA integrin receptor/ligand interactions mediate costimulation: VLA-4/FN, VLA-5/FN, and VLA-6/LN. VLA-5-dependent binding to FN but not costimulation by FN can be specifically blocked with peptides containing the RGD (arg-gly-asp) tripeptide sequence whereas VLA-4-dependent binding and costimulation can both be efficiently inhibited by a 12 amino acid peptide, LHGPEILDVPST (leu-his-gly-pro-glu-iso-leu-asp-val-pro-ser-thr), derived from the alternatively spliced IIICS region of FN. The costimulation provided by FN and LN in this system is stronger than and distinct from costimulatory signals provided by cytokines, such as IL-1 beta, IL-6,, and IL-7. These results suggest that, such as other adhesion molecules, T cell VLA integrins may also function in a dual capacity as adhesion and signalling molecules. In addition, they suggest that the interaction of T cells in vivo with ECM via VLA integrins plays a role not only in T cell migratory processes but may also influence Ag-specific T cell recognition.  相似文献   

19.
Specific association of tissue transglutaminase (tTG) with matrix fibronectin (FN) results in the formation of an extracellular complex (tTG-FN) with distinct adhesive and pro-survival characteristics. tTG-FN supports RGD-independent cell adhesion of different cell types and the formation of distinctive RhoA-dependent focal adhesions following inhibition of integrin function by competitive RGD peptides and function blocking anti-integrin antibodies alpha5beta1. Association of tTG with its binding site on the 70-kDa amino-terminal FN fragment does not support this cell adhesion process, which seems to involve the entire FN molecule. RGD-independent cell adhesion to tTG-FN does not require transamidating activity, is mediated by the binding of tTG to cell-surface heparan sulfate chains, is dependent on the function of protein kinase Calpha, and leads to activation of the cell survival focal adhesion kinase. The tTG-FN complex can maintain cell viability of tTG-null mouse dermal fibroblasts when apoptosis is induced by inhibition of RGD-dependent adhesion (anoikis), suggesting an extracellular survival role for tTG. We propose a novel RGD-independent cell adhesion mechanism that promotes cell survival when the anti-apoptotic role mediated by RGD-dependent integrin function is reduced as in tissue injury, which is consistent with the externalization and binding of tTG to fibronectin following cell damage/stress.  相似文献   

20.
Wang Z  Griffin M 《Amino acids》2012,42(2-3):939-949
TG2 is multifunctional enzyme which can be secreted to the cell surface by an unknown mechanism where its Ca(2+)-dependent transamidase activity is implicated in a number of events important to cell behaviour. However, this activity may only be transient due to the oxidation of the enzyme in the extracellular environment including its reaction with NO probably accounting for its many other roles, which are transamidation independent. In this review, we discuss the novel roles of TG2 at the cell surface and in the ECM acting either as a transamidating enzyme or as an extracellular scaffold protein involved in cell adhesion. Such roles include its ability to act as an FN co-receptor for β integrins or in a heterocomplex with FN interacting with the cell surface heparan sulphate proteoglycan syndecan-4 leading to activation of PKCα. These different properties of TG2 involve this protein in various physiological processes, which if not regulated appropriately can also lead to its involvement in a number of diseases. These include metastatic cancer, tissue fibrosis and coeliac disease, thus increasing its attractiveness as both a therapeutic target and diagnostic marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号