首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
To test the hypothesis that both physical and ecological barriers to gene flow drive population differentiation in tropical seabirds, we surveyed mitochondrial control region variation in 242 brown boobies (Sula leucogaster), which prefer inshore habitat, and 271 red-footed boobies (S. sula), which prefer pelagic habitat. To determine the relative influence of isolation and gene flow on population structure, we used both traditional methods and a recently developed statistical method based on coalescent theory and Bayesian inference (Isolation with Migration). We found that global population genetic structure was high in both species, and that female-mediated gene flow among ocean basins apparently has been restricted by major physical barriers including the Isthmus of Panama, and the periodic emergence of the Sunda and Sahul Shelves in Southeast Asia. In contrast, the evolutionary history of populations within ocean basins differed markedly between the two species. In brown boobies, we found high levels of population genetic differentiation and limited gene flow among colonies, even at spatial scales as small as 500 km. Although red-footed booby colonies were also genetically differentiated within ocean basins, coalescent analyses indicated that populations have either diverged in the face of ongoing gene flow, or diverged without gene flow but recently made secondary contact. Regardless, gene flow among red-footed booby populations was higher than among brown booby populations. We suggest that these contrasting patterns of gene flow within ocean basins may be explained by the different habitat preferences of brown and red-footed boobies.  相似文献   

2.
To further test the hypothesis that the Isthmus of Panama is a major barrier to gene flow in pantropical seabirds, we applied phylogeographic methods to mitochondrial control sequence variation in masked booby (Sula dactylatra) populations on either side of the Isthmus of Panama and the southern tip of Africa. In accord with Steeves et al. (2003), we found that all Caribbean masked boobies with the 'secondary contact' cytochrome b haplotype (m-B) shared a control region haplotype (Sd_100), which grouped with Indian-Pacific haplotypes and not Caribbean-Atlantic haplotypes. In addition, Sd_100 was more closely related to control region haplotypes in the Indian Ocean than in the Pacific. We also found that the 'secondary contact' birds diverged more recently from extant populations in the Indian Ocean than in the Pacific. Thus, it appears that these masked boobies did not breach the Isthmus of Panama. Rather, birds likely dispersed around the southern tip of Africa during favourable oceanographic conditions in the Pleistocene.  相似文献   

3.
We used variation in a portion of the mitochondrial DNA control region to examine phylogeography of Tamiasciurus hudsonicus, a boreal-adapted small mammal in the central Rocky Mountain region. AMOVA revealed that 65.66% of genetic diversity was attributable to variation within populations, 16.93% to variation among populations on different mountain ranges, and 17.41% to variation among populations within mountain ranges. Nested clade analysis revealed two major clades that likely diverged in allopatry during the Pleistocene: a southern clade from southern Colorado and a northern clade comprising northern Colorado, Wyoming, eastern Utah, and eastern Idaho. Historically restricted gene flow as a result of geographic barriers was indicated between populations on opposite sides of the Green River and Wyoming Basin and among populations in eastern Wyoming. In some instances genetic structure indicated isolation by distance.  相似文献   

4.
Concordance between mitochondrial DNA (mtDNA) markers and morphologically based species identifications was examined for the two currently recognized Kogia species. We sequenced 406 base pairs of the control region and 398 base pairs of the cytochrome b gene from 108 Kogia breviceps and 47 K. sima samples. As expecred, the two sister species were reciprocally monophyletic to each other in phylogenetic reconstructions, but within K. sima , we unexpectedly observed another reciprocally monophyletic relationship. The two K. sima clades resolved were phylogeographically concordant with all of the haplotypes in one clade observed solely among specimens sampled from the Atlantic Ocean and with those in the other clade observed solely among specimens sampled from the Indo-Pacific Ocean. These apparently allopatric clades were observed in all phylogenetic reconstructions using the maximum parsimony, maximum likelihood, and neighborjoining algorithms, with the mtDNA gene sequences analyzed separately and combined. The nucleotide diversity for the combined gene sequence haplotypes of the two K. sima clades resolved in our analyses was 0.58% and 1.03% for the Atlantic and Indo-Pacific, respectively, whereas for the two recognized sister species, nucleotide diversity was 1.65% and 4.02% for K. breviceps and K. sima , respectively. The combined gene sequence haplotypes have accumulated 44 fixed base pair differences between the two K. sima clades compared to 20 fixed base pair differences between the two recognized sister species. Although our results are consistent with species-level differences between the two K. sima clades, recognition of a third Kogia species awaits supporting evidence that these two apparently allopatric clades represent reproductively isolated groups of animals.  相似文献   

5.
Phylogeographic studies are often focused on temperate European species with relict footholds in the Mediterranean region. Past climatic oscillations usually induced range contractions and expansions from refugial areas located in southern Europe, and spatial distribution of genetic diversity show that northward expansions were usually pioneer-like. Actually, few studies have focused on circum-Mediterranean species, which probably were not influenced in the same way by climatic oscillations. We present the phylogeography of the bark beetle Tomicus destruens, which is restricted to the whole Mediterranean basin and the Atlantic coasts of North Africa and Portugal. We systematically sequenced 617 bp of the mitochondrial genes COI and COII for 42 populations (N = 219). Analysis revealed 53 haplotypes geographically structured in two clades, namely eastern and western clades, that diverged during the Pleistocene. A contact zone was identified along the Adriatic coast of Italy. Interestingly, we found contrasting levels of genetic structure within each clade. The eastern group was characterized by a significant phylogeographic pattern and low levels of gene flow, whereas the western group barely showed a spatial structure in haplotype distribution. Moreover, the main pine hosts were different between groups, with the Aleppo-brutia complex in the east and the maritime pine in the west. Potential roles of host species, climatic parameters and geographical barriers are discussed and the phylogeographic patterns are compared to classical models of postglacial recolonization in Europe.  相似文献   

6.
The phylogeographic pattern of mitochondrial DNA variation in water voles (Arvicola terrestris) from 57 localities across the United Kingdom and representative samples from Spain, France, Switzerland and Finland was determined from sequence variation in the central portion of the control region. Twenty-seven different haplotypes were resolved which formed two distinct phylogenetic clades. This major division separated haplotypes found in Scotland from those found in England and Wales. Nested clade analysis of haplotypes indicated that such a division was a consequence of allopatric fragmentation. The haplotypes found in Switzerland, France and Spain clustered with Scottish haplotypes, whereas the haplotype from Finland clustered with the English/Welsh haplotypes. These patterns indicate that contemporary Scottish populations are derived from an Iberian glacial refugium, whereas English and Welsh populations are derived from an eastern European refugium. As such, the postglacial recolonization of the United Kingdom must have involved two colonization events, either in different localities with no subsequent contact, or as two waves separated over time, with the second wave of colonizers displacing the first. An analysis of molecular variance (AMOVA) identified significant population genetic divergence within both the major clades, indicative of restricted gene flow and regional population isolation. The implications of both phylogeographical and population genetic structure are discussed in context with the conservation of water voles in Britain.  相似文献   

7.
R. Li  W. Chen  L. Tu  & J. Fu 《Journal of Zoology》2009,277(4):309-316
At high altitude, rivers may function as barriers for amphibians. We examined 21 populations of Scutiger boulengeri from the Hengduan Mountains with 1038 base pairs of mitochondrial cytochrome b gene sequences. The haplotypes of S. boulengeri formed three clades on the gene tree, and each clade was restricted to one mountain ridge separated by two major river systems, the Yalong River and the Dadu River. The vicariant pattern of the gene tree suggests that these rivers functioned as effective barriers during population differentiation. On the other hand, mountain ridges may have facilitated amphibian movement. Populations within the uninterrupted mountain ranges of clades II and III, revealed little genetic structure. The northern clade I, harboured a substantial amount of genetic variation, which might be the consequence of the rugged terrain and heterogeneous habitat of this area. Furthermore, one outgroup species, Scutiger glandulatus , formed the fourth clade and nested within S. boulengeri , suggesting that S. boulengeri is likely a paraphyletic species or a species complex.  相似文献   

8.
Phylogenetic and paleontological analyses are combined to reveal patterns of species origination and divergence and to define the significance of potential and actual barriers to dispersal in Conus, a species-rich genus of predatory gastropods distributed throughout the world's tropical oceans. Species-level phylogenetic hypotheses are based on nucleotide sequences from the nuclear calmodulin and mitochondrial 16S rRNA genes of 138 Conus species from the Indo-Pacific, eastern Pacific, and Atlantic Ocean regions. Results indicate that extant species descend from two major lineages that diverged at least 33 mya. Their geographic distributions suggest that one clade originated in the Indo-Pacific and the other in the eastern Pacific + western Atlantic. Impediments to dispersal between the western Atlantic and Indian Oceans and the central and eastern Pacific Ocean may have promoted this early separation of Indo-Pacific and eastern Pacific + western Atlantic lineages of Conus. However, because both clades contain both Indo-Pacific and eastern Pacific + western Atlantic species, migrations must have occurred between these regions; at least four migration events took place between regions at different times. In at least three cases, incursions between regions appear to have crossed the East Pacific Barrier. The paleontological record illustrates that distinct sets of Conus species inhabited the Indo-Pacific, eastern Pacific + western Atlantic, and eastern Atlantic + former Tethys Realm in the Tertiary, as is the case today. The ranges of <1% of fossil species (N=841) spanned more than one of these regions throughout the evolutionary history of this group.  相似文献   

9.
Trans-Arctic dispersals and population and range expansions during the Pleistocene enhanced opportunities for evolutionary diversification and contributed to the process of speciation within the capelin, a northern marine-fish complex exhibiting a circumpolar distribution. Capelin is composed of four highly divergent and geographically discrete mitochondrial DNA (mtDNA) clades (609 bp; cytochrome b). Two clades occur in the North Atlantic, one associated with Canadian Atlantic waters, including Hudson Bay, and the second distributed from West Greenland to the Barents Sea. Two additional clades occur in the Arctic and northeast Pacific Oceans, representing the most recent divergence within the capelin phylogenetic tree. Judged from mtDNA diversity, capelin populations comprising all clades experienced at least one demographic and spatial reduction-expansion episode during recent Pleistocene glaciations that imprinted their molecular architecture. The large contemporary populations in the northeast Pacific and Arctic Oceans exhibited significant genetic structure whereas no such structure was detected in the equally extensive North Atlantic clades. All clades are characterized by one or two prevalent mtDNA haplotypes distributed over the entire range of the clade. Assuming a Pacific ancestor for capelin, we infer that capelin dispersed on two separate occasions to the North Atlantic. A more recent event resulted in the isolation of eastern Pacific and Arctic clades, with the Arctic clade positioned for a potential third Atlantic invasion, as revealed by the presence of this clade in the Labrador Sea. The Labrador Sea is a potential contact zone for three of the four capelin clades.  相似文献   

10.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

11.
The capelin (Mallotus villosus) is a widespread marine fish species for which previous work has identified geographically distinct mtDNA clades, the frontiers of which are well within adult and larval dispersal capabilities. Here, we use AFLPs to test for the presence of nuclear gene flow among clades. In addition, we evaluate genetic structuring within one clade, the Northwest Atlantic (NWA). We found that each of the mtDNA clades corresponds with a unique nuclear DNA genetic cluster. Within the NWA clade, we detected individuals with small but significant amounts of genetic ancestry from other clades, likely due to historical introgression. Further support for historical introgression comes from analyses of variance in locus-specific differentiation, which support introgression between some clades and divergence without gene flow between others. Within the NWA, we identified two genetic clusters that correspond to sites in geographically adjacent areas. However, these clusters differ primarily at 'outlier' loci, and a genetic subdivision (K=2) was not supported by genetic clustering programs using neutral loci. Significant neutral F(ST) differentiation was found only between sites that otherwise differed at outlier loci. Thus, these populations may be in the initial stages of 'isolation by adaptation'. These results suggest strong between-clade reproductive isolation despite opportunities for gene flow and support the hypothesis that selection can contribute to divergence in otherwise 'open' systems.  相似文献   

12.
The phylogeography of Atlantic brown trout ( Salmo trutta ) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 904–917.  相似文献   

13.
Aim We assessed population differentiation and gene flow across the range of the blue‐footed booby (Sula nebouxii) (1) to test the generality of the hypothesis that tropical seabirds exhibit higher levels of population genetic differentiation than their northern temperate counterparts, and (2) to determine if specialization to cold‐water upwelling systems increases dispersal, and thus gene flow, in blue‐footed boobies compared with other tropical sulids. Location Work was carried out on islands in the eastern tropical Pacific Ocean from Mexico to northern Peru. Methods We collected samples from 173 juvenile blue‐footed boobies from nine colonies spanning their breeding distribution and used molecular markers (540 base pairs of the mitochondrial control region and seven microsatellite loci) to estimate population genetic differentiation and gene flow. Our analyses included classic population genetic estimation of pairwise population differentiation, population growth, isolation by distance, associations between haplotypes and geographic locations, and analysis of molecular variance, as well as Bayesian analyses of gene flow and population differentiation. We compared our results with those for other tropical seabirds that are not specialized to cold‐water upwellings, including brown (Sula leucogaster), red‐footed (S. sula) and masked (S. dactylatra) boobies. Results Blue‐footed boobies exhibited weak global population differentiation at both mitochondrial and nuclear loci compared with all other tropical sulids. We found evidence of high levels of gene flow between colonies within Mexico and between colonies within the southern portion of the range, but reduced gene flow between these regions. We also found evidence for population growth, isolation by distance and weak phylogeographic structure. Main conclusions Tropical seabirds can exhibit weak genetic differentiation across large geographic distances, and blue‐footed boobies exhibit the weakest population differentiation of any tropical sulid studied thus far. The weak population genetic structure that we detected in blue‐footed boobies may be caused by increased dispersal, and subsequently increased gene flow, compared with other sulids. Increased dispersal by blue‐footed boobies may be the result of the selective pressures associated with cold‐water upwelling systems, to which blue‐footed boobies appear specialized. Consideration of foraging environment may be particularly important in future studies of marine biogeography.  相似文献   

14.
This study extends the geographic coverage of a previous study of mitochondrial DNA restriction fragment length polymorphism in European anchovy. Both studies together include 24 samples representing 17 localities extending from the Black Sea, through the Mediterranean Sea to the eastern Atlantic as far south as Dakar, Senegal. Eighty-eight haplotypes define two clades (A and B) separated by 3.2% sequence divergence. Clade A has a star-like genealogy indicative of a recent population expansion. Clade B has a more complex genealogy, consisting of several haplotypes at intermediate frequencies. The distributions of these clades consist of a mosaic with abrupt changes between some areas and gradients between other areas. Clade A predominates the Black and Aegean seas, but is present throughout the Mediterranean. Unexpectedly, new data show that clade A is also at a high frequency in the Atlantic, from Portugal to at least Senegal. Overall, the level of genetic differentiation among populations is high (F(ST)=0.148, p<0.0001), with the greatest differences between basins. AMOVA reveals four main geographical groups: Atlantic, central Mediterranean, Aegean Sea, and Black Sea. Mismatch distribution clearly indicates historical bottleneck and population expansion for clade A, while for clade B such evidence is equivocal. This difference may reflect a range expansion for both clades, but with higher gene flow (Nm values) between demes for clade A. Both contemporary and historical processes are important in shaping the complex genetic population structure of European anchovy.  相似文献   

15.
We examined mitochondrial cytochrome b sequence variation in masked Sula dactylatra , red-footed S. sula , and brown S. leucogaster boobies sampled from islands in the central and eastern Pacific Ocean and in the Caribbean Sea. Each species showed a different phylogeographic pattern. Whereas haplotypes in masked and red-footed boobies were shared across the central and eastern Pacific (i.e., across the Eastern Pacific Basin), brown booby haplotypes were not shared across the Eastern Pacific Basin. Although most masked booby haplotypes from the Pacific were distinct from those in the Caribbean, one haplotype was shared across the Isthmus of Panama. Red-footed and brown boobies, however, did not share haplotypes across the Isthmus of Panama. We estimate that divergence of these regional populations occurred within the last 560,000 years. Thus, the Isthmus of Panama and the Eastern Pacific Basin (albeit to a lesser degree) appear to have played a role in the diversification of these species.  相似文献   

16.
Keeney DB  Heist EJ 《Molecular ecology》2006,15(12):3669-3679
Although many coastal shark species have widespread distributions, the genetic relatedness of worldwide populations has been examined for few species. The blacktip shark, (Carcharhinus limbatus), inhabits tropical and subtropical coastal waters throughout the world. In this study, we examined the genetic relationships of blacktip shark populations (n = 364 sharks) throughout the majority of the species' range using the entire mitochondrial control region (1067-1070 nucleotides). Two geographically distinct maternal lineages (western Atlantic, Gulf of Mexico, and Caribbean Sea clades, and eastern Atlantic, Indian, and Pacific Ocean clades) were identified and shallow population structure was detected throughout their geographic ranges. These findings indicate that a major population subdivision exists across the Atlantic Ocean, but not the Pacific Ocean. The historical dispersal of this widespread, coastal species may have been interrupted by the rise of the Isthmus of Panama. This scenario implies historical dispersal across the Pacific Ocean (supported by the recovery of the same common haplotype from the Philippines, Hawaii, and the Gulf of California reflecting recent/contemporary dispersal abilities) and an oceanic barrier to recent migration across the Atlantic. Genetic structure within the eastern Atlantic/Indo-Pacific (Phi(ST) = 0.612, P < 0.001) supports maternal philopatry throughout this area, expanding previous western Atlantic findings. Eastern Atlantic/Indo-Pacific C. limbatus control region haplotypes were paraphyletic to Carcharhinus tilstoni haplotypes in our maximum-parsimony analysis. The greater divergence of western Atlantic C. limbatus than C. tilstoni from eastern Atlantic/Indo-Pacific C. limbatus reflects the taxonomic uncertainty of western Atlantic C. limbatus.  相似文献   

17.
A fragment (564 bp) of the mitochondrial cytochrome-b (Cyt-b) gene was studied for 73 individual rice field frogs (Hoplobatrachus rugulosus) from 18 geographical locations (populations) within Thailand. Sequence analysis revealed the presence of 12 haplotypes, with five haplotypes being represented in two or more populations, and the other seven being population-distinct haplotypes. Phylogenetic analysis by maximum parsimony, maximum likelihood, and neighbor joining analyses all placed the 12 haplotypes into two distinct and well-separated clades with high bootstrap support, reflecting the high sequence divergences between the clades (25.3-32.3%). The mountain ranges and the Isthmus of Kra are likely to have played important roles in hindering gene flow among H. rugulosus populations in Thailand. From the sequence divergence values, the two clades of H. rugulosus can be classified into two distinct species, and therefore, the strains of H. rugulosus bred in farm stocks should be restricted to a population of one clade so as to avoid cross breeding between the two clades.  相似文献   

18.
Mitochondrial DNA sequence data for 295 individuals of the marine bivalve Macoma balthica (L.) were collected from 10 sites across the European distribution, and from Alaska. The data were used to infer population subdivision history and estimate current levels of gene flow. Inferred historical biogeography was expected to be congruent with colonization of the Atlantic Ocean from the Pacific Ocean after the opening of the Bering Strait 3.5 Ma. In addition, the last glacial maximum, about 18000 years ago, was expected to have been responsible for most of the present-day distribution of molecular variation within Europe, because the area must have been recolonized after confinement to France and the south of the British Isles during the last glacial maximum. Current gene flow was hypothesized to be high, because the larvae of M. balthica spend 2-5 weeks drifting in the water column. The geographical distribution of one highly diverged haplotype clade was found to be disjunct and was encountered exclusively in samples from the Baltic Sea and Alaska. A molecular clock calibration for marine bivalve cytochrome-c-oxidase I dates this clade as having split off from the other haplotypes 9.8-39 Ma. Multiple colonizations of the Atlantic Ocean from the Pacific by M. balthica may explain the strong differences found between Baltic Sea and other European populations of this species. The sympatric occurrence of the highly diverged mitochondrial lineages in western parts of the Baltic Sea points to secondary admixture. With the use of coalescent analysis, population divergence times for French vs. other non-Baltic European populations ('Atlantic population assemblage') were estimated at a minimum of about 110000 years ago, well before the last glacial maximum 18000 years ago. Signatures of population divergence of M. balthica that appear to have originated during the Pleistocene have thus survived the last glacial maximum. Some of the populations within the Atlantic assemblage are currently isolated, while others appear to be connected by gene flow. Apparently, populations of this species can remain highly subdivided in spite of the potential for high gene flow, implying that their population and evolutionary dynamics can be independent.  相似文献   

19.
The genetic differentiation among populations of the leaf beetle Chrysolina virgata living in wetlands of Japan was studied based on the sequence data of the mitochondrial cytochrome oxidase subunit I gene region (750 bp). Two distinct lineages of mitochondrial haplotypes were found: one (clade A) consisted of 26 haplotypes distributed over the distribution range of C. virgata between north‐east Honshu and Kyushu, whereas the other (clade B) was monotypic and confined to a small region in north‐east Honshu where it coexisted with clade A. Nested clade analysis for these haplotypes suggested that range expansion and following differentiation due to isolation by distance might have resulted in the present distribution pattern of the haplotypes in clade A. We discuss the evolutionary process leading to the occurrence of two distinct haplotype clades in Japan in terms of repeated colonization from the continent and range expansion and contraction during climatic changes.  相似文献   

20.
Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号