首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Wnt/β-catenin signaling pathway is a key regulator of bone homeostasis. Sclerostin act as an extracellular inhibitor of canonical Wnt signaling through high-affinity binding to the Wnt co-receptor LRP5/6. Disruption of the interaction between LRP5/6 and sclerostin has been recognized as a therapeutic target for osteoporosis. We identified a quinoxaline moiety as a new small-molecule inhibitor of the LRP5/6-sclerostin interaction through pharmacophore-based virtual screening, docking simulations, and in vitro assays. Structure-activity relationship studies and binding mode hypotheses were used to optimize the scaffold and yield the compound BMD4503-2, which recovered the downregulated activity of the Wnt/β-catenin signaling pathway by competitive binding to the LRP5/6-sclerostin complex. Overall, this study showed that the optimized structure-based drug design was a promising approach for the development of small-molecule inhibitors of the LRP5/6-sclerostin interaction. A novel scaffold offered considerable insights into the structural basis for binding to LRP5/6 and disruption of the sclerostin-mediated inhibition of Wnt signaling.  相似文献   

2.
The mechanism by which the high-bone-mass (HBM) mutation (G171V) of the Wnt coreceptor LRP5 regulates canonical Wnt signaling was investigated. The mutation was previously shown to reduce DKK1-mediated antagonism, suggesting that the first YWTD repeat domain where G171 is located may be responsible for DKK-mediated antagonism. However, we found that the third YWTD repeat, but not the first repeat domain, is required for DKK1-mediated antagonism. Instead, we found that the G171V mutation disrupted the interaction of LRP5 with Mesd, a chaperone protein for LRP5/6 that is required for transport of the coreceptors to cell surfaces, resulting in fewer LRP5 molecules on the cell surface. Although the reduction in the number of cell surface LRP5 molecules led to a reduction in Wnt signaling in a paracrine paradigm, the mutation did not appear to affect the activity of coexpressed Wnt in an autocrine paradigm. Together with the observation that osteoblast cells produce autocrine canonical Wnt, Wnt7b, and that osteocytes produce paracrine DKK1, we think that the G171V mutation may cause an increase in Wnt activity in osteoblasts by reducing the number of targets for paracrine DKK1 to antagonize without affecting the activity of autocrine Wnt.  相似文献   

3.
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.  相似文献   

4.
Msx2 exerts bone anabolism via canonical Wnt signaling   总被引:2,自引:0,他引:2  
  相似文献   

5.
Structural insight into the mechanisms of Wnt signaling antagonism by Dkk   总被引:2,自引:0,他引:2  
Dickkopf (Dkk) proteins are antagonists of the canonical Wnt signaling pathway and are crucial for embryonic cell fate and bone formation. Wnt antagonism of Dkk requires the binding of the C-terminal cysteine-rich domain of Dkk to the Wnt coreceptor, LRP5/6. However, the structural basis of the interaction between Dkk and low density lipoprotein receptor-related protein (LRP) 5/6 is unknown. In this study, we examined the structure of the Dkk functional domain and elucidated its interactions with LRP5/6. Using NMR spectroscopy, we determined the solution structure of the C-terminal cysteine-rich domain of mouse Dkk2 (Dkk2C). Then, guided by mutagenesis studies, we docked Dkk2C to the YWTD beta-propeller domains of LRP5/6 and showed that the ligand binding site of the third LRP5/6 beta-propeller domain matches Dkk2C best, suggesting that this domain binds to Dkk2C with higher affinity. Such differential binding affinity is likely to play an essential role in Dkk function in the canonical Wnt pathway.  相似文献   

6.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5T253 and hMSC-LRP5T244 cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling, respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling, but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion, canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate.  相似文献   

7.
8.
9.
10.
11.
Sequential roles of Hedgehog and Wnt signaling in osteoblast development   总被引:12,自引:0,他引:12  
Signals that govern development of the osteoblast lineage are not well understood. Indian hedgehog (Ihh), a member of the hedgehog (Hh) family of proteins, is essential for osteogenesis in the endochondral skeleton during embryogenesis. The canonical pathway of Wnt signaling has been implicated by studies of Lrp5, a co-receptor for Wnt proteins, in postnatal bone mass homeostasis. In the present study we demonstrate that beta-catenin, a central player in the canonical Wnt pathway, is indispensable for osteoblast differentiation in the mouse embryo. Moreover, we present evidence that Wnt signaling functions downstream of Ihh in development of the osteoblast lineage. Finally Wnt7b is identified as a potential endogenous ligand regulating osteogenesis. These data support a model that integrates Hh and Wnt signaling in the regulation of osteoblast development.  相似文献   

12.
13.
Wnt signaling is involved in developmental processes and in adult stem cell homeostasis. This study analyzes the role(s) of key Wnt signaling mediators in the maintenance and osteogenesis of mesenchymal stem cells (MSCs). We focus specifically on the involvement of low-density lipoprotein-related protein 5 (LRP5), T-cell factor 1 (TCF1), and Frizzled (Fz) receptors, in the presence or absence of exogenous, prototypical canonical (Wnt3a), and non-canonical (Wnt5a) Wnts. In undifferentiated MSCs, LRP5 and TCF1 mediate canonical Wnt signal transduction, leading to increased proliferation, enhanced synergistically by Wnt3a. However, LRP5 overexpression inhibits osteogenic differentiation, further suppressed by Wnt3a. Wnt5a does not affect cell proliferation but enhances osteogenesis of MSCs. Interestingly, Wnt5a inhibits Wnt3a effects on MSCs, while Wnt3a suppresses Wnt5a-mediated enhancement of osteogenesis. Flow cytometry revealed that LRP5 expression elicits differential changes in Fz receptor profiles in undifferentiated versus osteogenic MSCs. Taken together, these results suggest that Wnt signaling crosstalk and functional antagonism with the LRP5 co-receptor are key signaling regulators of MSC maintenance and differentiation.  相似文献   

14.
15.
Exposure to lead (Pb) from environmental sources remains an overlooked and serious public health risk. Starting in childhood, Pb in the skeleton can disrupt epiphyseal plate function, constrain the growth of long bones, and prevent attainment of a high peak bone mass, all of which will increase susceptibility to osteoporosis later in life. We hypothesize that the effects of Pb on bone mass, in part, come from depression of Wnt/β-catenin signaling, a critical anabolic pathway for osteoblastic bone formation. In this study, we show that depression of Wnt signaling by Pb is due to increased sclerostin levels in vitro and in vivo. Downstream activation of the β-catenin pathway using a pharmacological inhibitor of GSK-3β ameliorates the Pb inhibition of Wnt signaling activity in the TOPGAL reporter mouse. The effect of Pb was determined to be dependent on sclerostin expression through use of the SOST gene knock-out mice, which are resistant to Pb-induced trabecular bone loss and maintain their mechanical bone strength. Moreover, isolated bone marrow cells from the sclerostin null mice show improved bone formation potential even after exposure to Pb. Also, our data suggest that the TGFβ canonical signaling pathway is the mechanism by which Pb controls sclerostin production. Taken together these results support our hypothesis that the osteoporotic-like phenotype observed after Pb exposure is, in part, regulated through modulation of the Wnt/β-catenin pathway.  相似文献   

16.
High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation.  相似文献   

17.
LRP5 and LRP6 are proteins predicted to contain four six-bladed β-propeller domains and both bind the bone-specific Wnt signaling antagonist sclerostin. Here, we report the crystal structure of the amino-terminal region of LRP6 and using NMR show that the ability of sclerostin to bind to this molecule is mediated by the central core of sclerostin and does not involve the amino- and carboxyl-terminal flexible arm regions. We show that this structured core region interacts with LRP5 and LRP6 via an NXI motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core region. This sequence is related closely to a previously identified motif in laminin that mediates its interaction with the β-propeller domain of nidogen. However, the NXI motif is not involved in the interaction of sclerostin with LRP4 (another β-propeller containing protein in the LRP family). A peptide derived from the loop 2 region of sclerostin blocked the interaction of sclerostin with LRP5/6 and also inhibited Wnt1 but not Wnt3A or Wnt9B signaling. This suggests that these Wnts interact with LRP6 in different ways.  相似文献   

18.
Wnt11 signals through both canonical (β-catenin) and non-canonical pathways and is up-regulated during osteoblast differentiation and fracture healing. In these studies, we evaluated the role of Wnt11 during osteoblastogenesis. Wnt11 overexpression in MC3T3E1 pre-osteoblasts increases β-catenin accumulation and promotes bone morphogenetic protein (BMP)-induced expression of alkaline phosphatase and mineralization. Wnt11 dramatically increases expression of the osteoblast-associated genes Dmp1 (dentin matrix protein 1), Phex (phosphate-regulating endopeptidase homolog), and Bsp (bone sialoprotein). Wnt11 also increases expression of Rspo2 (R-spondin 2), a secreted factor known to enhance Wnt signaling. Overexpression of Rspo2 is sufficient for increasing Dmp1, Phex, and Bsp expression and promotes bone morphogenetic protein-induced mineralization. Knockdown of Rspo2 abrogates Wnt11-mediated osteoblast maturation. Antagonism of T-cell factor (Tcf)/β-catenin signaling with dominant negative Tcf blocks Wnt11-mediated expression of Dmp1, Phex, and Rspo2 and decreases mineralization. However, dominant negative Tcf fails to block the osteogenic effects of Rspo2 overexpression. These studies show that Wnt11 signals through β-catenin, activating Rspo2 expression, which is then required for Wnt11-mediated osteoblast maturation.Wnt signaling is a key regulator of osteoblast differentiation and maturation. In mesenchymal stem cell lines, canonical Wnt signaling by Wnt10b enhances osteoblast differentiation (1). Canonical Wnt signaling through β-catenin has also been shown to enhance the chondroinductive and osteoinductive properties of BMP22 (2, 3). During BMP2-induced osteoblast differentiation of mesenchymal stem cell lines, cross-talk between BMP and Wnt pathways converges through the interaction of Smad4 with β-catenin (2).Canonical Wnt signaling is also critical for skeletal development and homeostasis. During limb development, expression of Wnt3a in the apical ectodermal ridge of limb buds maintains cells in a highly proliferative and undifferentiated state (4, 5). Disruption of canonical Wnt signaling in Lrp5/Lrp6 compound knock-out mice results in limb- and digit-patterning defects (6). Wnt signaling is also involved in the maintenance of post-natal bone mass. Gain of function in the Wnt co-receptor Lrp5 leads to increased bone mass, whereas loss of Lrp5 function is associated with decreased bone mass and osteoporosis pseudoglioma syndrome (7, 8). Mice with increased Wnt10b expression have increased trabecular bone, whereas Wnt10b-deficient mice have reduced trabecular bone (9). Similarly, mice nullizygous for the Wnt antagonist sFrp1 have increased trabecular bone accrual throughout adulthood (10).Although canonical Wnt signaling regulates osteoblastogenesis and bone formation, the profile of endogenous Wnts that play a role in osteoblast differentiation and maturation is not well described. During development, Wnt11 is expressed in the perichondrium and in the axial skeleton and sternum (11). Wnt11 expression is increased during glucocorticoid-induced osteogenesis (12), indicating a potential role for Wnt11 in osteoblast differentiation. Interestingly, Wnt11 activates both β-catenin-dependent as well as β-catenin-independent signaling pathways (13). Targeted disruption of Wnt11 results in late embryonic/early post-natal death because of cardiac dysfunction (14). Although these mice have no reported skeletal developmental abnormalities, early lethality obfuscates a detailed examination of post-natal skeletal modeling and remodeling.In murine development, Wnt11 expression overlaps with the expression of R-spondin 2 (Rspo2) in the apical ectodermal ridge (11, 15). R-spondins are a novel family of proteins that share structural features, including two conserved cysteinerich furin-like domains and a thrombospondin type I repeat (16). The four R-spondin family members can activate canonical Wnt signaling (15, 1719). Rspo3 interacts with Frizzled 8 and Lrp6 and enhances Wnt ligand signaling. Rspo1 enhances Wnt signaling by interacting with Lrp6 and inhibiting Dkk-mediated receptor internalization (20). Rspo1 was also shown to potentiate Wnt3a-mediated osteoblast differentiation (21). Rspo2 knock-out mice, which die at birth, have limb patterning defects associated with altered β-catenin signaling (2224). However, the role of Rspo2 in osteoblast differentiation and maturation remains unclear.Herein we report that Wnt11 overexpression in MC3T3E1 pre-osteoblasts activates β-catenin and augments BMP-induced osteoblast maturation and mineralization. Wnt11 increases the expression of Rspo2. Overexpression of Rspo2 in MC3T3E1 is sufficient for augmenting BMP-induced osteoblast maturation and mineralization. Although antagonism of Tcf/β-catenin signaling blocks the osteogenic effects of Wnt11, Rspo2 rescues this block, and knockdown of Rspo2 shows that it is required for Wnt11-mediated osteoblast maturation and mineralization. These studies identify both Wnt11 and Rspo2 as novel mediators of osteoblast maturation and mineralization.  相似文献   

19.
Objective:In bone tissue engineering, the use of osteoblastic seed cells has been widely adopted to mediate the osteogenic differentiation so as to prompt bone regeneration and repair. It is hypothesized that Dok5 can regulate the proliferation and differentiation of osteoblasts. In this study, the role of Dok5 in osteoblast proliferation and differentiation was investigated.Methods:A lentiviral vector to silence Dok5 was transferred to C3H10, 293T and C2C12 cells. CCK-8 assay was used to detect the cell proliferation. Cells were stained by ALP and AR-S staining. Western blot and RT-PCR were used to detect the expression levels of related factors.Results:Dok5 expression level was gradually up-regulated during the osteoblast differentiation. Dok5 silencing down-regulated the expression levels of osteogenic biosignatures OPN, OCN, and Runx2 and suppressed the osteogenesis. Additionally, the osteoblast proliferation and canonical Wnt/β-catenin signaling were suppressed upon Dok5 knockdown, β-catenin expression level was significantly down-regulated in the knockdown group, while the expression levels of GSK3-β and Axin, negative regulators in the Wnt signaling pathway, were up-regulated. Furthermore, overexpression of Dok5 promoted the proliferation and osteogenesis and activated the canonical Wnt/β-catenin signaling pathway.Conclusion:Dok5 may regulate the osteogenic proliferation and differentiation via the canonical Wnt/β-catenin signaling pathway.  相似文献   

20.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号