首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
More than 99% of prokaryotes in the environment cannot be cultured in the laboratory, a phenomenon that limits our understanding of microbial physiology, genetics, and community ecology. One way around this problem is metagenomics, the culture-independent cloning and analysis of microbial DNA extracted directly from an environmental sample. Recent advances in shotgun sequencing and computational methods for genome assembly have advanced the field of metagenomics to provide glimpses into the life of uncultured microorganisms.  相似文献   

3.
宏基因组学( metagenome)是直接从土壤、海水、人及动物胃肠道、口腔、呼吸道、皮肤等环境中获取样品DNA,利用载体将其克隆到替代宿主细胞中构建宏基因文库,以高通量检测为主要技术来研究特定环境中全部微生物的基因组及筛选活性物质和基因的新兴学科。利用宏基因组学技术不仅能够有效地检测特定环境的微生物群落结构,扩展了微生物资源的利用空间,发展了新兴的高通量检测技术,丰富了生物信息学内容。基于宏基因组学研究方法在环境微生物研究中的优势,对近年来相关领域、方法及其在人及动物病原微生物研究中的应用进行综述,以期将此方法用于实验动物病原微生物的调查分析及动物疫情、生物安全的监测。  相似文献   

4.
More than 99% of identified prokaryotes, including many from the marine environment,cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.  相似文献   

5.
未培养微生物的研究与微生物分子生态学的发展*   总被引:16,自引:0,他引:16  
叶姜瑜  罗固源   《微生物学通报》2004,31(5):111-115
近年来现代分子技术和基因组学逐渐渗透到有关生命科学的整个领域,也为微生物生态学提供了新的研究方法和机遇。16S rRNA基因序列分析、DNA-DNA杂交、核酸指纹图谱以及宏基因组学等分子技术检查自然环境中的微生物,可以克服传统纯培养技术的不足,是一条探知未培养微生物、寻找新基因及其产物的新途径,开启了我们认识微生物多样性和获得新资源的大门。  相似文献   

6.
稳定性同位素探测技术在微生物生态学研究中的应用   总被引:10,自引:0,他引:10  
稳定性同位素标记技术同分子生物学技术相结合而发展起来的稳定性同位素探测技术(stableisotope probing,SIP),在对各种环境中微生物群落组成进行遗传分类学鉴定的同时,可确定其在环境过程中的功能,提供复杂群落中微生物相互作用及其代谢功能的大量信息,具有广阔的应用前景.其基本原理是:将原位或微宇宙(microcosm)的环境样品暴露于稳定性同位素富集的基质中,这些样品中存在的某些微生物能够以基质中的稳定(性同位素为碳源或氮源进行物质代谢并满足其自身生长需要,基质中的稳定性同位素被吸收同化进入微生物体内,参与各类物质如核酸(DNA和RNA)及磷脂脂肪酸(PLFA)等的生物合成,通过提取、分离、纯化、分析这些微生物体内稳定性同位素标记的生物标志物,从而将微生物的组成与其功能联系起来.在介绍稳定性同位素培养基质的选择及标记方法、合适的生物标志物的选择及提取分离方法的基础上,举例阐述了此项技术在甲基营养菌、有机污染物降解菌、根际微生物生态、互营微生物、宏基因组学等方面的应用.  相似文献   

7.
8.
Microbial genome sequencing has entered a new phase, where DNA sequence information is gathered from entire microbial communities (metagenomics or environmental genomics) rather than from individual microorganisms. By providing access to the genetic material of vast numbers of organisms, most of which are organisms that have never been isolated or cultivated, a new level of insight is being gained into the diversity and extent of the microbial processes that are presently occuring in environmental communities. By extending metagenomic-based approaches to the study of very complex and methodologically recalcitrant soil environments, a recent study has found that ammonia-oxidizing archaea are more abundant in many soils than bacteria.1 These findings not only highlight the undoubtedly critical yet unknown roles that archaea play in global nutrient cycles but illustrate the importance of genomic studies for informing us about the functional capacity of life on Earth.  相似文献   

9.
A major research goal in microbial ecology is to understand the relationship between gene organization and function involved in environmental processes of potential interest. Given that more than an estimated 99% of microorganisms in most environments are not amenable to culturing, methods for culture-independent studies of genes of interest have been developed. The wealth of metagenomic approaches allows environmental microbiologists to directly explore the enormous genetic diversity of microbial communities. However, it is extremely difficult to obtain the appropriate sequencing depth of any particular gene that can entirely represent the complexity of microbial metagenomes and be able to draw meaningful conclusions about these communities. This review presents a summary of the metagenomic approaches that have been useful for collecting more information about specific genes. Specific subsets of metagenomes that focus on sequence analysis were selected in each metagenomic studies. This 'targeted metagenomics' approach will provide extensive insight into the functional, ecological and evolutionary patterns of important genes found in microorganisms from various ecosystems.  相似文献   

10.
Current isolation methods access only a small subset of the total microbial diversity. Although an isolate traditionally has been required for genomic characterization, the advent of sequencing of entire natural microbial communities enables culture-independent genomic analysis. Information about the genetic potential of uncultivated organisms can be used to predict the form of metabolic interdependencies and nutritional requirements. We believe that this could provide the information necessary to bypass bottlenecks that have inhibited cultivation of many microorganisms. However, it might not be practical or possible to isolate all of the vast number of microbial species and strains for laboratory-based characterization. Ultimately, cultivation-independent genomic and genomically enabled approaches could provide a way to directly analyze microbial activity in its geochemical and ecological context.  相似文献   

11.
Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co‐cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large‐scale data sets, which can identify persistently co‐occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species’ unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging‐to‐Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated.  相似文献   

12.
13.
Simple and rapid methods for the quantification of DNA, RNA and proteins using specific fluorescent dyes are proposed for the comparison and monitoring of microbial communities from the environment. The purpose of this study was the use of straightforward in situ methods which voided the need for preservation of samples and the risk of potential degradation and quantitative changes during transportation. Aside from this, methods used to obtain information on environmental microbial communities are generally time-consuming and present certain difficulty above all when working on solid substrates such as soils and rocks. New generation fluorescent dyes that bind specifically to DNA, RNA and proteins allow simple and rapid estimates of these biomolecules in crude environmental samples.

PRACTICAL APPLICATIONS


Monitoring the metabolic state of microbial communities on different substrates and environments is a requirement for comparing samples and assessing the participation of microorganisms in a variety of processes. Solid substrates are not easily analyzed by microscopic techniques and they require long processing times and tedious work. Aside from this, only a minor fraction (<1%) of microorganisms in most natural environments can be cultured in standard microbiological media ( Ward et al. 1990 ). Other studies using incorporation of labeled substrates to approach activity rates or biomolecule extractions represent complex and long procedures during environmental studies.In order to evaluate microbial communities in a variety of substrates and environments, rapid and simple methods are proposed by measuring DNA, RNA and/or proteins using specific fluorescent dyes, without a need for prior purification, from crude solid samples.  相似文献   

14.
Molecular and functional diversity in soil micro-organisms   总被引:7,自引:0,他引:7  
Prosser  James I. 《Plant and Soil》2002,244(1-2):9-17
Traditional approaches to the study of microbial diversity have relied on laboratory cultivation of isolates from natural environments and identification by classical techniques, including analysis of morphology, physiological characteristics and biochemical properties. These approaches provide information on fine-scale diversity but suffer from bias, resulting from the media and cultivation conditions employed, and from the inability to grow and isolate significant proportions of natural communities in the laboratory. An alternative approach is the amplification of ribosomal RNA and functional genes from nucleic acids extracted directly from environmental samples, with subsequent analysis by `fingerprinting' methods or by sequencing and phylogenetic analysis. This approach avoids the need for laboratory cultivation and has provided major insights into species and functional diversity of bacterial and archaeal populations. This article reviews molecular approaches to the characterisation of prokaryote diversity in natural environments, their more recent application to fungal diversity and the advantages and limitations of molecular analyses.  相似文献   

15.
16.
Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies.  相似文献   

17.
Metagenomic analyses: past and future trends   总被引:2,自引:0,他引:2  
  相似文献   

18.
高通量技术的迅猛发展促使微生物生态学研究获得了重大突破,掀起了元基因组学(Metagenomics)研究的热潮。元基因组学通常被定义为对未培养的环境样本中微生物群体的DNA序列分析。随着微生物组学数据的日益剧增,微生物大数据的高效管理与分析越来越受到研究者的关注。如何从海量的微生物组数据中挖掘出具有科研价值的数据信息并应用于实际问题成为当前的研究热点。目前已有很多计算生物学程序工具及数据库用于元基因组数据的分析与管理。本文主要综述了随着高通量测序技术的进步,国际上主要的微生物组计划及微生物组数据平台,如人类微生物组项目(human microbiome project,HMP)、地球微生物组项目(earth microbiome project,EMP)、欧盟的肠道微生物组计划(metagenomics of human intestinal tract,MetaHIT)、MG-RAST、i Microbe、整合微生物组(integration microbial genomes,IMG)以及EBI Metagenomics等;介绍了微生物数据分析的主要流程与工具;提出了建设多源异构的微生物生态数据管理与分析系统的必要性。  相似文献   

19.
With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号