首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
稳定性同位素探测技术在微生物生态学研究中的应用   总被引:10,自引:0,他引:10  
稳定性同位素标记技术同分子生物学技术相结合而发展起来的稳定性同位素探测技术(stableisotope probing,SIP),在对各种环境中微生物群落组成进行遗传分类学鉴定的同时,可确定其在环境过程中的功能,提供复杂群落中微生物相互作用及其代谢功能的大量信息,具有广阔的应用前景.其基本原理是:将原位或微宇宙(microcosm)的环境样品暴露于稳定性同位素富集的基质中,这些样品中存在的某些微生物能够以基质中的稳定(性同位素为碳源或氮源进行物质代谢并满足其自身生长需要,基质中的稳定性同位素被吸收同化进入微生物体内,参与各类物质如核酸(DNA和RNA)及磷脂脂肪酸(PLFA)等的生物合成,通过提取、分离、纯化、分析这些微生物体内稳定性同位素标记的生物标志物,从而将微生物的组成与其功能联系起来.在介绍稳定性同位素培养基质的选择及标记方法、合适的生物标志物的选择及提取分离方法的基础上,举例阐述了此项技术在甲基营养菌、有机污染物降解菌、根际微生物生态、互营微生物、宏基因组学等方面的应用.  相似文献   

2.
微生物群落多样性是微生物生态学和环境学研究的重点之一。分子生物学方法应用于微生物群落结构分析使得对环境样品中占大多数的不可培养微生物的研究成为了可能。由于功能上高度保守,序列上的不同位置具有不同的变异速率,核糖体RNA(rRNA)是目前在微生物分子生态学上最为有用以及应用最广泛的分子标记,通过rRNA序列比对,可以分析不同分类水平的系统发育关系。元基因组学研究方法通过对环境样品中的各种微生物群落的总的基因组进行分析,充分展示了环境微生物代谢途径,极大地扩展了对微生物的认识。快速发展的高通量测序极大地促进了各项微生物生态学技术的发展,带来了新的突破。  相似文献   

3.
Um SH  Lee JB  Kwon SY  Li Y  Luo D 《Nature protocols》2006,1(2):995-1000
A major challenge in clinical diagnostics and environmental analysis is the difficulty in rapid and sensitive detection of multiple target molecules simultaneously (i.e., multiplexed detections). Our group has designed and synthesized a dendrimer-like DNA (DL-DNA) that is multivalent and anisotropic; using this unique DNA structure, we have developed a fluorescence-tagged nanobarcode system for multiplex detection. This nanobarcode system allows the rapid and sensitive detection of multiple pathogens simultaneously using the ratios of two different fluorescent dyes, green and red, with which different DL-DNAs are labeled. The key step of our nanobarcode model lies in the monodisperse preparation of DL-DNA. Two methods, solution phase and solid phase, are presented here. With slight modifications, this platform technology can also be extended to the multiplexed detection of RNA and proteins. This protocol can be completed in 2-5 d.  相似文献   

4.
A new method for monitoring phenotypic profiles of pure cultures and complex microbial communities was evaluated. The approach was to stain microorganisms with a battery of fluorescent dyes prior to flow cytometry analysis (FCM) and to analyse the data using multivariate methods, including principal component analysis and partial least squares. The FCM method was quantitatively evaluated using different mixtures of pure cultures as well as microbial communities. The results showed that the method could quantitatively and reproducibly resolve both populations and communities of microorganisms with 5% abundance in a diverse microbial background. The feasibility of monitoring complex microbial communities over time during the biodegradation of naphthalene using the FCM method was demonstrated. The biodegradation of naphthalene occurred to differing extents in microcosms representing three different types of aromatic-contaminated groundwater and a sample of bio-basin water. The FCM method distinguished each of these four microbial communities. The phenotypic profiles were compared with genotypic profiles generated by random-amplified polymorphic DNA analysis. The genotypic profiles of the microbial communities described only the microbial composition, and not their functional change, whereas the phenotypic profiles seemed to contain information on both the composition and the functional change of the microorganisms. Furthermore, event analysis of the FCM data showed that microbial communities with initially differing compositions could converge towards a similar composition if they had a capacity for high levels of degradation, whereas microbial communities with similar initial compositions could diverge if they differed in biodegrading ability.  相似文献   

5.
DNA stable-isotope probing   总被引:3,自引:0,他引:3  
Stable-isotope probing is a method used in microbial ecology that provides a means by which specific functional groups of organisms that incorporate particular substrates are identified without the prerequisite of cultivation. Stable-isotope-labeled carbon (13C) or nitrogen (15N) sources are assimilated into microbial biomass of environmental samples. Separation and molecular analysis of labeled nucleic acids (DNA or RNA) reveals phylogenetic and functional information about the microorganisms responsible for the metabolism of a particular substrate. Here, we highlight general guidelines for incubating environmental samples with labeled substrate and provide a detailed protocol for separating labeled DNA from unlabeled community DNA. The protocol includes a modification of existing published methods, which maximizes the recovery of labeled DNA from CsCl gradients. The separation of DNA and retrieval of unlabeled and labeled fractions can be performed in 4-5 days, with much of the time being committed to the ultracentrifugation step.  相似文献   

6.
7.
8.
Visualization of microorganisms in soils and sediments using fluorescent dyes is a common method in microbial ecology studies, but is often hampered by strong nonspecific background fluorescence that can mask genuine cellular signals. The cyanine nucleic acid binding dyes TO-PRO-3 and TOTO-3 iodide enabled a clear detection of microbial cells in a mineral soil, while nonspecific background was greatly reduced compared with commonly used dyes. When used as counterstains for fluorescence in situ hybridization (FISH), both cyanine dyes allowed identification of microbial cells despite strong background from nonspecifically bound probes. TO-PRO-3 and TOTO-3 are easy to use and represent superior alternatives for detecting microorganisms in soil environments.  相似文献   

9.
Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.  相似文献   

10.
刘坤香  刘博  薛莹  黄巍  李备 《微生物学报》2023,63(5):1833-1849
快速准确地识别和鉴定微生物对于环境科、食品质量以及医学诊断等领域研究至关重要。拉曼光谱(Raman spectroscopy)已经被证明是一种能够实现微生物快速诊断的新技术,在提供微生物指纹图谱信息的同时,能够快速、非标记、无创、敏感地在固体和液体环境中实现微生物单细胞水平的检测。本文简单介绍了拉曼光谱的基本概念和原理,重点综述了拉曼光谱微生物检测应用中的样品处理方法及光谱数据处理方法。除此之外,本文概括了拉曼光谱在细菌、病毒和真菌中的应用,其中单独概括了拉曼在细菌快速鉴定和抗生素药敏检测中的应用。最后,本文阐述了拉曼光谱在微生物检测中的挑战和展望。  相似文献   

11.
12.
Mixed microbial communities are complex, dynamic and heterogeneous. It is therefore essential that biomolecular fractions obtained for high-throughput omic analyses are representative of single samples to facilitate meaningful data integration, analysis and modeling. We have developed a new methodological framework for the reproducible isolation of high-quality genomic DNA, large and small RNA, proteins, and polar and non-polar metabolites from single unique mixed microbial community samples. The methodology is based around reproducible cryogenic sample preservation and cell lysis. Metabolites are extracted first using organic solvents, followed by the sequential isolation of nucleic acids and proteins using chromatographic spin columns. The methodology was validated by comparison to traditional dedicated and simultaneous biomolecular isolation methods. To prove the broad applicability of the methodology, we applied it to microbial consortia of biotechnological, environmental and biomedical research interest. The developed methodological framework lays the foundation for standardized molecular eco-systematic studies on a range of different microbial communities in the future.  相似文献   

13.
14.
15.
Methanogens have been reported in complex microbial communities from hypersaline environments, but little is known about their phylogenetic diversity. In this work, methane concentrations in environmental gas samples were determined while methane production rates were measured in microcosm experiments with competitive and non-competitive substrates. In addition, the phylogenetic diversity of methanogens in microbial mats from two geographical locations was analyzed: the well studied Guerrero Negro hypersaline ecosystem, and a site not previously investigated, namely Laguna San Ignacio, Baja California Sur, Mexico. Methanogenesis in these microbial mats was suspected based on the detection of methane (in the range of 0.00086 to 3.204 %) in environmental gas samples. Microcosm experiments confirmed methane production by the mats and demonstrated that it was promoted only by non-competitive substrates (trimethylamine and methanol), suggesting that methylotrophy is the main characteristic process by which these hypersaline microbial mats produce methane. Phylogenetic analysis of amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from natural and manipulated samples revealed various methylotrophic methanogens belonging exclusively to the family Methanosarcinaceae. Moderately halophilic microorganisms of the genus Methanohalophilus were predominant (>60 % of mcrA sequences retrieved). Slightly halophilic and marine microorganisms of the genera Methanococcoides and Methanolobus, respectively, were also identified, but in lower abundances.  相似文献   

16.
A new Eucarya-specific 18S rDNA primer set was constructed and tested using denaturing gradient gel electrophoresis to analyze the genetic diversity of eukaryotic microorganisms in aquatic environments. All eukaryal lines of descent exhibited four or fewer nucleotide mismatches in the forward primer sequence, except for the Microspora line of descent. The reverse primer annealed to a more conserved region with fewer than two nucleotide mismatches. Genomic DNA from test organisms with different numbers of nucleotide mismatches were amplified to test primer specificity. Relatively low annealing temperatures allowed the amplification of sequences with up to four nucleotide mismatches while still maintaining specificity for the eukaryal domain. Denaturing gradient gel electrophoresis was used to separate similarly sized PCR products of environmental samples, and the obtained banding patterns were converted to a binary format for statistical comparisons. Cluster analysis of these patterns showed similar results to a cluster analysis based on environmental variables. This approach provides an analytical tool to study the population structure and molecular ecology of eukaryotic microbial communities inhabiting aquatic environments.  相似文献   

17.
Park JW  Crowley DE 《BioTechniques》2005,38(4):579-586
The analysis of microbial communities in environmental samples requires accurate and reproducible methods for extraction of DNA from sample matrices that have different physical and chemical characteristics. Even with the same sample type, variations in laboratory methods can result in different DNA yields. To circumvent this problem, we have developed an easy and inexpensive way to normalize the quantities of DNA that involves the addition of an internal standard prepared from plasmid DNA. The method was evaluated by comparing DNA yields using different DNA extraction procedures, after which the DNA was used for microbial community analysis by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S ribosomal RNA (rRNA) and for quantification of 16S rRNA gene copy numbers in environmental samples by real-time PCR. Our results show that use of the internal standard allows normalization of the resulting data and more accurate quantification of gene copy numbers in soil samples. These methods should also have broad application for various other types of environmental samples.  相似文献   

18.
Gene expression monitoring in soils by mRNA analysis and gene lux fusions   总被引:3,自引:0,他引:3  
Two methods recently developed to monitor the gene expression of microbial communities in soil are the extraction and detection of messenger RNA from soil microorganisms and the construction and use of lux-based bioreporter strains. The goal of these approaches is to assess microbial activity in natural and impacted soil environments.  相似文献   

19.
基因芯片及其在环境微生物研究中的应用   总被引:9,自引:0,他引:9  
基因芯片因其具有高密度、高灵敏度、快速 (实时 )检测、经济、自动化和低背景水平等特点 ,而广泛应用于不同的研究领域。目前 ,应用于环境微生物研究的基因芯片主要有功能基因芯片 (FGAs)、系统发育的寡核苷酸芯片 (POAs)和群落基因组芯片 (CGAs)。综述了基因芯片在环境微生物研究中的应用 ,包括自然环境中微生物的基因表达分析、比较基因组分析和混合微生物群落的分析等。讨论了基因芯片面临的挑战和前景展望  相似文献   

20.
In order to identify and quantify the microorganisms present in a certain ecosystem, it has become necessary to develop molecular methods avoiding cultivation, which allows to characterize only the countable part of the microorganisms in the sample, therefore losing the information related to the microbial component which presents a vitality condition, although it cannot duplicate in culture medium. In this context, one of the most used techniques is fluorescence in situ hybridization (FISH) with ribosomal RNA targeted oligonucleotide probes. Owing to its speed and sensitivity, this technique is considered a powerful tool for phylogenetic, ecological, diagnostic and environmental studies in microbiology. Through the use of species-specific probes, it is possible to identify different microorganisms in complex microbial communities, thus providing a solid support to the understanding of inter-species interaction. The knowledge of the composition and distribution of microorganisms in natural habitats can be interesting for ecological reasons in microbial ecology, and for safety and technological aspects in food microbiology. Methodological aspects, use of different probes and applications of FISH to microbial ecosystems are presented in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号