首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical behavior of mammalian mandibles is well‐studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three‐dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure–function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high‐resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid‐mandibular contact, suggesting important contributions from, and trade‐offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the mechanical behavior of the Alligator mandible, including important performance metrics such as magnitude and orientation of reaction forces, and mediolateral bending and torsional stress distributions. J.Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
3.
Abstract:  During the Triassic, some 250–200 million years ago, the basal archosaurs showed a transition from sprawling to erect posture. Past studies focused on changes in bone morphology, especially on the joints, as they reorientated from a sprawling to an erect posture. Here we introduce a biomechanical model to estimate the magnitude of femur stress in different postures, in order to determine the most reasonable postures for five basal archosaurs along the line to crocodiliforms (the rhynchosaur Stenaulorhynchus , the basal archosaur Erythrosuchus , the 'rauisuchian' Batrachotomus , the aetosaurs Desmatosuchus and Typothorax ). The results confirm a sprawling posture in basal taxa and an erect posture in derived taxa. Erect posture may have evolved as a strategy to reduce large bending stresses on the limb bone caused by heavy body weights in larger forms.  相似文献   

4.
The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.  相似文献   

5.
The discovery of a largely complete and well preserved specimen of Poposaurus gracilis has provided the opportunity to generate the first phylogenetically based reconstruction of pelvic and hindlimb musculature of an extinct nondinosaurian archosaur. As in dinosaurs, multiple lineages of basal archosaurs convergently evolved parasagittally erect limbs. However, in contrast to the laterally projecting acetabulum, or “buttress erect” hip morphology of ornithodirans, basal archosaurs evolved a very different, ventrally projecting acetabulum, or “pillar erect” hip. Reconstruction of the pelvic and hindlimb musculotendinous system in a bipedal suchian archosaur clarifies how the anatomical transformations associated with the evolution of bipedalism in basal archosaurs differed from that of bipedal dinosaurs and birds. This reconstruction is based on the direct examination of the osteology and myology of phylogenetically relevant extant taxa in conjunction with osteological correlates from the skeleton of P. gracilis. This data set includes a series of inferences (presence/absence of a structure, number of components, and origin/insertion sites) regarding 26 individual muscles or muscle groups, three pelvic ligaments, and two connective tissue structures in the pelvis, hindlimb, and pes of P. gracilis. These data provide a foundation for subsequent examination of variation in myological orientation and function based on pelvic and hindlimb morphology, across the basal archosaur lineage leading to extant crocodilians. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic‐ and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro‐ and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and provide the anatomical foundation for biomechanical investigations of joint tissues. J. Morphol. 276:601–630, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use μCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present in these taxa (and secondarily lost in extant crocodilians) and was potentially primitive for Archosauria as a whole.  相似文献   

8.
Adding new taxa to morphological phylogenetic analyses without substantially revising the set of included characters is a common practice, with drawbacks (undersampling of relevant characters) and potential benefits (character selection is not biased by preconceptions over the affinities of the ‘retrofitted’ taxon). Retrofitting turtles (Testudines) and other taxa to recent reptile phylogenies consistently places turtles with anapsid‐grade parareptiles (especially Eunotosaurus and/or pareiasauromorphs), under both Bayesian and parsimony analyses. This morphological evidence for turtle–parareptile affinities appears to contradict the robust genomic evidence that extant (living) turtles are nested within diapsids as sister to extant archosaurs (birds and crocodilians). However, the morphological data are almost equally consistent with a turtle–archosaur clade: enforcing this molecular scaffold onto the morphological data does not greatly increase tree length (parsimony) or reduce likelihood (Bayesian inference). Moreover, under certain analytic conditions, Eunotosaurus groups with turtles and thus also falls within the turtle–archosaur clade. This result raises the possibility that turtles could simultaneously be most closely related to a taxon traditionally considered a parareptile (Eunotosaurus) and still have archosaurs as their closest extant sister group.  相似文献   

9.

Background

Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time.

Methodology/Principal Findings

This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved.

Conclusions/Significance

Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.  相似文献   

10.
Early Triassic chirotherian footprint assemblages from Poland, Germany, and Morocco are important for understanding archosaur evolution in the aftermath of the Permian-Triassic crisis. However, their ichnotaxonomy is confusing because various authors have interpreted their diversity differently. After an analysis and ichnotaxonomic re-assessment, the presence of the ichnogenera Brachychirotherium, Isochirotherium, and Chirotherium in these assemblages is not supported. Distant similarities with these ichnotaxa are functions of extra morphological variation and substrate-related factors. Instead, Early Triassic chirotherian footprints described under these names are assigned here to the ichnogenus Protochirotherium and to a more slender morphotype identified as Synaptichnium. In particular, Protochirotherium appears to be more widely distributed in central Pangea as a characteristic morphotype reflecting a distinct stage in archosaur evolution. Trackmakers were nonarchosaurian archosauriforms or, alternatively, stem-group crocodylians. Morphologically and temporally these footprints match the hypothetical ancestor of the Chirotherium barthii trackmaker. Chirotherium barthii appears by the beginning of the Middle Triassic. Because of its restricted stratigraphic range, and its wider distribution in central Pangea, Protochirotherium also has biostratigraphic significance for this region and can be considered as an indicator of Early Triassic-aged strata.  相似文献   

11.
New data on the braincase of the aetosaurian archosaur Stagonolepis robertsoni Agassiz are presented, based on new preparation, synthetic casting, and interpretation of fossil material from the Triassic Elgin Sandstones, Scotland. The metotic fissure is not divided by bone. The perilymphatic foramen is completely bound by bone, and faces away from the otic capsule in a posterolateral direction. A prominent subvertical ridge on the anterolateral edge of the exoccipital and upper part of the basioccipital cannot be directly associated with the subcapsular process of the chondrocranium of extant crocodilians. This ridge projects laterally beyond the ventral ramus of the opisthotic, and lies anterior to the external foramina for the hypoglossal nerve. The overall structure of the braincases (especially the otic region) of S. robertsoni and other aetosaurians, where known, is more similar (in terms of derived archosaurian characters) to those of crocodylomorphs than are the braincases of other major suchian groups. This provides evidence for the currently unorthodox hypothesis that, among major suchian clades, Aetosauria and Crocodylomorpha are each others' closest relatives. Support for this hypothesis is found in features of the palatine and prefrontal that have not been considered in recent studies of suchian phylogeny. This alternative phylogenetic hypothesis demands further investigation but, combined with the new morphological data that it explains, it provides a framework for the understanding of the evolution of the derived and distinctive braincase structure of extant crocodilians.  © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society, 2002, 136 , 7−23.  相似文献   

12.
The osteology of an almost complete braincase of the rauisuchian archosaur Batrachotomus kupferzellensis Gower from the Middle Triassic of Germany is described. There is a possibly discrete epiotic ossification, the metotic fissure is undivided by bone (i.e. there is a metotic foramen), the medial wall of the otic capsule is mostly ossified, the cerebral branch of the internal carotid artery entered the lateral surface of the parabasisphenoid, the ventral ramus of the opisthotic is more prominent laterally than a strong subvertical ridge on the exoccipital and basioccipital that lies posterior to the external foramen for the hypoglossal nerve, and the perilymphatic foramen faces away from the otic capsule in a posterior direction. Braincase morphology in the rauisuchians Saurosuchus galilei , Postosuchus kirkpatricki, and Tikisuchus romeri is reviewed. A matrix of 27 braincase characters for 12 archosaurian taxa is analysed. The most parsimonious hypothesis is consistent with the currently orthodox view of archosaurian phylogeny, except in that aetosaurians are more closely related to crocodylomorphs than is any rauisuchian. This phylogeny is used in a brief interpretation of the evolution of derived braincase features present in extant crocodilians. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 136 , 49–76.  相似文献   

13.
As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.  相似文献   

14.
In southern Spain, within the Chiclana de Segura Formation of red detrital fades, enigmatic structures were found whose origins are discussed here. Each structure is composed of the union of elongated traces, two laterals and a shorter central one. All are concave epireliefs at the top of a sandstone bed whose age is assumed to be Ladinian (Triassic). The sediments formed within a fluvial environment. We describe these imprints, their structures and measurements, and discuss their orientations and associations. The traces probably have an organic origin, and are most likely tracks made by a vertebrate, possibly an archosaur, although no osseous remains have been found to confirm this interpretation.  相似文献   

15.
“Zanclodon”arenaceus has been suggested to represent the oldest reliably dated phytosaur. The type and only specimen, a mandibular fragment of an archosaur from the Schilfsandstein (Carnian; Late Triassic) of Southwest Germany, is described in detail for the first time. “Z.”arenaceus is characterized by a great elongation of the mandible and symphysis, and labiolingually flattened, serrated teeth, a combination that is so far unique among Triassic archosaurs. The previous assignment to the enigmatic reptilian genusZanclodon is unsubstantiated. “Z.”arenaceus shares with Phytosauria both these mandibular characters, but differs in numerous other characters, including most of the autapomorphic mandibular and dental features of Phytosauria. Thus, “Z.”arenaceus is not a phytosaur as currently defined. A cladistic analysis identified “Z.”arenaceus as the sister-taxon of Phytosauria, but because of the limited data available and numerous homoplasies that occur among mandibular characters of archosaurs a closer relationship with other archosaur taxa is a reasonable alternative. It seems unjustified to redefine Phytosauria, or to propose a more inclusive taxon to include “Z.”arenaceus, and therefore the species is assessed as Archosauriaincertae sedis.  相似文献   

16.
Chronic foot disease poses a threat to the general health, represents a tremendous clinical challenge, and often is a reason for euthanasia in captive megaherbivores, among them the elephant and rhinoceros. Nevertheless, apart from the elephant, foot pathology is handled as being confined only to soft tissues whereas bone pathology is often overlooked. As a case in point, the authors selected the second largest mammal on land, the rhinoceros. We performed a computed tomographic (CT) study using the highest resolution available in veterinary world, followed by digital radiography of eight distal limbs from two white and one Indian rhinoceroses. Our study demonstrated that bone pathology in rhinoceroses’ foot is present and in large numbers, yet none of these were diagnosed ante mortem. Even when the animals were euthanized due to foot problems, the decision was based on soft tissue pathology rather than orthopedic reasons. Even more worrying is the fact that the largest number of osteopathologies was present in one of the white rhinoceroses that showed no discernable related clinical signs. This study describes for the first time the existence of bone pathology in white rhinoceros foot, in addition to the two previously described rhinoceros species - Indian and black rhinoceroses. Furthermore, the chronic foot disease reported for the Indian rhinoceros in our study was not restricted to soft tissue structures as was presumed ante mortem but included severe bone pathology. New evidence suggesting that osteopathology in rhinoceroses’ distal limb is more widespread than it was thought before could force us to rethink of radiographic diagnosis in captive megaherbivores as routine examination incorporated into their health management. The anticipated improvements in radiologic examinations in megaherbivores will increase the effectiveness of their management and husbandry and open the way for improved animal welfare and better wildlife conservation.  相似文献   

17.
Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.  相似文献   

18.
Abstract

Analytical palaeohistology techniques have allowed a better understanding of the microstructure of fossil bone, as well as of bone pathologies of extinct animals. Osteomyelitis is one of the oldest identified bone pathologies, occurring in Synapsida dating back as far as the Lower Permian. Here we show the presence of this pathology in the femur of Jonkeria parva, an omnivorous titanosuchid from the Tapinocephalus Assemblage Zone of the Karoo Basin of South Africa. The pathology is characterised by bony radial spicules growing perpendicular to the normal orientation of the unaffected fibrolamellar bone tissue, and shows localised increase in vascular canal size. Puncture marks on the femur suggests that an attack by a predator may have resulted in a bacterial infection that caused contiguous and subjacent osteomyelitis.  相似文献   

19.
《Médecine Nucléaire》2023,47(3):131-133
Bone scintigraphy is a nuclear imaging scan using a radiopharmaceutical composed of a bisphosphonate coupled to a radionuclide (technetium 99m). Radiopharmaceutical uptake is particularly important at the level of the bone structures having a strong osteoblastic activity. These uptakes can be due to a benign pathology (fracture, loosening of prosthesis, rheumatic pathologies, etc.) or to a malignant pathology (primary or secondary bone lesion). The high sensitivity of bone scintigraphy makes it particularly interesting at the initial stage of the pathology, especially when X-rays are normal. In addition, its specificity has clearly improved in recent years with the increasingly use of tomoscintigraphy coupled with X-ray scanning (SPECT/CT). We describe the operating principle of bone scintigraphy, normal uptakes with its variants as well as pathological uptake features in traumatic, rheumatic, prosthetic or cancerous pathologies.  相似文献   

20.
《Médecine Nucléaire》2023,47(3):134-151
Bone scintigraphy is a nuclear imaging scan using a radiopharmaceutical composed of a bisphosphonate coupled to a radionuclide (technetium 99m). Radiopharmaceutical uptake is particularly important at the level of the bone structures having a strong osteoblastic activity. These uptakes can be due to a benign pathology (fracture, loosening of prosthesis, rheumatic pathologies, etc.) or to a malignant pathology (primary or secondary bone lesion). The high sensitivity of bone scintigraphy makes it particularly interesting at the initial stage of the pathology, especially when X-rays are normal. In addition, its specificity has clearly improved in recent years with the increasingly use of tomoscintigraphy coupled with X-ray scanning (SPECT/CT). We describe the operating principle of bone scintigraphy, normal uptakes with its variants as well as pathological uptake features in traumatic, rheumatic, prosthetic or cancerous pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号