首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Developments in technology, web-based teaching and whole slide imaging have broadened the teaching horizon in anatomic pathology. Creating online learning material including many types of media such as radiologic images, whole slides, videos, clinical and macroscopic photographs, is now accessible to most universities. Unfortunately, a major limiting factor to maintain and update the learning material is the amount of resources needed. In this perspective, a French-national university network was initiated in 2011 to build joint online teaching modules consisting of clinical cases and tests. The network has since expanded internationally to Québec, Switzerland and Ivory Coast.

Method

One of the first steps of the project was to build a learning module on inflammatory skin pathology for interns and residents in pathology and dermatology. A pathology resident from Québec spent 6 weeks in France and Switzerland to develop the contents and build the module on an e-learning Moodle platform under the supervision of two dermatopathologists. The learning module contains text, interactive clinical cases, tests with feedback, virtual slides, images and clinical photographs. For that module, the virtual slides are decentralized in 2 universities (Bordeaux and Paris 7). Each university is responsible of its own slide scanning, image storage and online display with virtual slide viewers.

Results

The module on inflammatory skin pathology includes more than 50 web pages with French original content, tests and clinical cases, links to over 45 virtual images and more than 50 microscopic and clinical photographs. The whole learning module is being revised by four dermatopathologists and two senior pathologists. It will be accessible to interns and residents in the spring of 2014. The experience and knowledge gained from that work will be transferred to the next international resident whose work will be aimed at creating lung and breast pathology learning modules.

Conclusion

The challenges of sustaining a project of this scope are numerous. The technical aspect of whole-slide imaging and storage needs to be developed by each university or group. The content needs to be regularly updated and its accuracy reviewed by experts in each individual domain. The learning modules also need to be promoted within the academic community to ensure maximal benefit for trainees. A collateral benefit of the project was the establishment of international partnerships between French-speaking universities and pathologists with the common goal of promoting pathology education through the use of multi-media technology including whole slide imaging.
  相似文献   

2.
The demand for accurate and reproducible phenotyping of a disease trait increases with the rising number of biobanks and genome wide association studies. Detailed analysis of histology is a powerful way of phenotyping human tissues. Nonetheless, purely visual assessment of histological slides is time-consuming and liable to sampling variation and optical illusions and thereby observer variation, and external validation may be cumbersome. Therefore, within our own biobank, computerized quantification of digitized histological slides is often preferred as a more precise and reproducible, and sometimes more sensitive approach. Relatively few free toolkits are, however, available for fully digitized microscopic slides, usually known as whole slides images. In order to comply with this need, we developed the slideToolkit as a fast method to handle large quantities of low contrast whole slides images using advanced cell detecting algorithms. The slideToolkit has been developed for modern personal computers and high-performance clusters (HPCs) and is available as an open-source project on github.com. We here illustrate the power of slideToolkit by a repeated measurement of 303 digital slides containing CD3 stained (DAB) abdominal aortic aneurysm tissue from a tissue biobank. Our workflow consists of four consecutive steps. In the first step (acquisition), whole slide images are collected and converted to TIFF files. In the second step (preparation), files are organized. The third step (tiles), creates multiple manageable tiles to count. In the fourth step (analysis), tissue is analyzed and results are stored in a data set. Using this method, two consecutive measurements of 303 slides showed an intraclass correlation of 0.99. In conclusion, slideToolkit provides a free, powerful and versatile collection of tools for automated feature analysis of whole slide images to create reproducible and meaningful phenotypic data sets.  相似文献   

3.
Whole slide imaging (WSI) allows generation of large whole slide images and their navigation with zoom in and out like a true virtual microscope. It has become widely used in surgical pathology for many purposes, such as education and training, research activity, teleconsultation, and primary diagnosis. However, in cytopathology, the use of WSI has been lagging behind histology, mainly due to the cytological specimen's characteristics, as groups of cells of different thickness are distributed throughout the slide. To allow the same focusing capability of light microscope, slides have to be scanned at multiple focal planes, at the cost of longer scan times and larger file size. These are the main technical pitfalls of WSI for cytopathology, partly overcome by solutions like liquid‐based preparations. Validation studies for the use in primary diagnosis are less numerous and more heterogeneous than in surgical pathology. WSI has been proved effective for training students and successfully used in proficiency testing, allowing the creation of digital cytology atlases. Longer scan times are also a barrier for use in rapid on‐site evaluation, but WSI retains its advantages of easy sharing of images for consultation, multiple simultaneous viewing in different locations, the possibility of unlimited annotations and easy integration with medical records. Moreover, digital slides set the laboratory free from reliance on a physical glass slide, with no more concern of fading of stain or slide breakage. Costs are still a problem for small institutions, but WSI can also represent the beginning of a more efficient way of working.  相似文献   

4.
Efficient use of whole slide imaging in pathology needs automated region of interest (ROI) retrieval and classification, through the use of image analysis and data sorting tools. One possible method for data sorting uses Spectral Analysis for Dimensionality Reduction. We present some interesting results in the field of histopathology and cytohematology. In histopathology, we developed a Computer-Aided Diagnosis system applied to low-resolution images representing the totality of histological breast tumour sections. The images can be digitized directly at low resolution or be obtained from sub-sampled high-resolution virtual slides. Spectral Analysis is used (1) for image segmentation (stroma, tumour epithelium), by determining a "distance" between all the images of the database, (2) for choosing representative images and characteristic patterns of each histological type in order to index them, and (3) for visualizing images or features similar to a sample provided by the pathologist. In cytohematology, we studied a blood smear virtual slide acquired through high resolution oil scanning and Spectral Analysis is used to sort selected nucleated blood cell classes so that the pathologist may easily focus on specific classes whose morphology could then be studied more carefully or which can be analyzed through complementary instruments, like Multispectral Imaging or Raman MicroSpectroscopy.  相似文献   

5.
OBJECTIVE: To evaluate the diagnostic accuracy of videomicroscopy image selection for expert consultation in cervical cytology. STUDY DESIGN: One hundred diagnostically difficult cervical cytologic smears were selected and rescreened by a general pathologist who chose, from each slide, four or five fields featuring abnormal cells. Video images were digitized and stored on a 512 x 512-pixel matrix using an image acquisition and transmission system. Five experts each reviewed 20 of the 100 cases, and a sixth reviewed all 100 cases. Diagnoses based on selected digitized images were compared to those based on conventional examination of whole slides. RESULTS: Intraobserver agreement was fair to excellent for all six experts (kappa value: 0.47-0.81); it was complete or acceptable in 68.4-85% of cases. Compared to the reference diagnosis, interobserver agreement was not significantly different whether cases were examined by screening the entire slide or by videomicroscopy of selected fields. The marked discordance in four cases concerned very small cells the significance of which was misinterpreted on videomicroscopy because of poor image quality due to lack of focus setting. CONCLUSION: This exploratory study showed that selection of videomicroscopy images seems as reliable as conventional examination of slides for expert consultation on diagnostically difficult cervical cytologic smear cases.  相似文献   

6.

Background

Validation of digital whole slide images is crucial to ensure that diagnostic performance is at least equivalent to that of glass slides and light microscopy. The College of American Pathologists Pathology and Laboratory Quality Center recently developed recommendations for internal digital pathology system validation. Following these guidelines we sought to validate the performance of a digital approach for routine diagnosis by using an iPad and digital control widescreen-assisted workstation through a pilot study.

Methods

From January 2014, 61 histopathological slides were scanned by ScanScope Digital Slides Scanner (Aperio, Vista, CA). Two independent pathologists performed diagnosis on virtual slides in front of a widescreen by using two computer devices (ImageScope viewing software) located to different Health Institutions (AOUI Verona) connected by local network and a remote image server using an iPad tablet (Aperio, Vista, CA), after uploading the Citrix receiver for iPad. Quality indicators related to image characters and work-flow of the e-health cockpit enterprise system were scored based on subjective (high vs poor) perception. The images were re-evaluated two weeks apart.

Results

The whole glass slides encountered 10 liver: hepatocarcinoma, 10 renal carcinoma, 10 gastric carcinoma and 10 prostate biopsies: adenocarcinoma, 5 excisional skin biopsies: melanoma, 5 lymph-nodes: lymphoma. 6 immuno- and 5 special stains were available for intra- and internet remote viewing. Scan times averaged two minutes and 54 seconds per slide (standard deviation 2 minutes 34 seconds). Megabytes ranged from 256 to 680 (mean 390) per slide storage. Reliance on glass slide, image quality (resolution and color fidelity), slide navigation time, simultaneous viewers in geographically remote locations were considered of high performance score. Side by side comparisons between diagnosis performed on tissue glass slides versus widescreen were excellent showing an almost perfect concordance (0.81, kappa index).

Conclusions

We validated our institutional digital pathology system for routine diagnostic facing with whole slide images in a cockpit enterprise digital system or iPad tablet. Computer widescreens are better for diagnosing scanned glass slide that iPad. For urgent requests, iPad may be used. Legal aspects have to be soon faced with to permit the clinical use of this technology in a manner that does not compromise patient care.
  相似文献   

7.

Background

Currently available microscope slide scanners produce whole slide images at various resolutions from histological sections. Nevertheless, acquisition area and so visualization of large tissue samples are limited by the standardized size of glass slides, used daily in pathology departments. The proposed solution has been developed to build composite virtual slides from images of large tumor fragments.

Materials and methods

Images of HES or immunostained histological sections of carefully labeled fragments from a representative slice of breast carcinoma were acquired with a digital slide scanner at a magnification of 20×. The tiling program involves three steps: the straightening of tissue fragment images using polynomial interpolation method, and the building and assembling of strips of contiguous tissue sample whole slide images in × and y directions. The final image is saved in a pyramidal BigTiff file format. The program has been tested on several tumor slices. A correlation quality control has been done on five images artificially cut.

Results

Sixty tumor slices from twenty surgical specimens, cut into two to twenty six pieces, were reconstructed. A median of 98.71% is obtained by computing the correlation coefficients between native and reconstructed images for quality control.

Conclusions

The proposed method is efficient and able to adapt itself to daily work conditions of classical pathology laboratories.
  相似文献   

8.
Estimates of islet area and numbers and endocrine cell composition in the adult human pancreas vary from several hundred thousand to several million and beta mass ranges from 500 to 1500 mg. With this known heterogeneity, a standard processing and staining procedure was developed so that pancreatic regions were clearly defined and islets characterized using rigorous histopathology and immunolocalization examinations. Standardized procedures for processing human pancreas recovered from organ donors are described in part 1 of this series. The pancreas is processed into 3 main regions (head, body, tail) followed by transverse sections. Transverse sections from the pancreas head are further divided, as indicated based on size, and numbered alphabetically to denote subsections. This standardization allows for a complete cross sectional analysis of the head region including the uncinate region which contains islets composed primarily of pancreatic polypeptide cells to the tail region. The current report comprises part 2 of this series and describes the procedures used for serial sectioning and histopathological characterization of the pancreatic paraffin sections with an emphasis on islet endocrine cells, replication, and T-cell infiltrates. Pathology of pancreatic sections is intended to characterize both exocrine, ductular, and endocrine components. The exocrine compartment is evaluated for the presence of pancreatitis (active or chronic), atrophy, fibrosis, and fat, as well as the duct system, particularly in relationship to the presence of pancreatic intraductal neoplasia. Islets are evaluated for morphology, size, and density, endocrine cells, inflammation, fibrosis, amyloid, and the presence of replicating or apoptotic cells using H&E and IHC stains. The final component described in part 2 is the provision of the stained slides as digitized whole slide images. The digitized slides are organized by case and pancreas region in an online pathology database creating a virtual biobank. Access to this online collection is currently provided to over 200 clinicians and scientists involved in type 1 diabetes research. The online database provides a means for rapid and complete data sharing and for investigators to select blocks for paraffin or frozen serial sections.  相似文献   

9.
The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.  相似文献   

10.

Introduction

Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves.

Method

We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&;E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&;E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research.

Discussion

As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available.We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality – color.
  相似文献   

11.
The traditional microscope, together with the “routine” hematoxylin and eosin (H & E) stain, remains the “gold standard” for diagnosis of cancer and other diseases; remarkably, it and the majority of associated biological stains are more than 150 years old. Immunohistochemistry has added to the repertoire of “stains” available. Because of the need for specific identification and even measurement of “biomarkers,” immunohistochemistry has increased the demand for consistency of performance and interpretation of staining results. Rapid advances in the capabilities of digital imaging hardware and software now offer a realistic route to improved reproducibility, accuracy and quantification by utilizing whole slide digital images for diagnosis, education and research. There also are potential efficiencies in work flow and the promise of powerful new analytical methods; however, there also are challenges with respect to validation of the quality and fidelity of digital images, including the standard H & E stain, so that diagnostic performance by pathologists is not compromised when they rely on whole slide images instead of traditional stained tissues on glass slides.  相似文献   

12.

Background

We describe development and evaluation of the user-friendly web based virtual microscopy - WebMicroscope for teaching and learning dental students basic and oral pathology. Traditional students microscopes were replaced by computer workstations.

Methods

The transition of the basic and oral pathology courses from light to virtual microscopy has been completed gradually over a five-year period. A pilot study was conducted in academic year 2005/2006 to estimate the feasibility of integrating virtual microscopy into a traditional light microscopy-based pathology course. The entire training set of glass slides was subsequently converted to virtual slides and placed on the WebMicroscope server. Giving access to fully digitized slides on the web with a browser and a viewer plug-in, the computer has become a perfect companion of the student.

Results

The study material consists now of over 400 fully digitized slides which covering 15 entities in basic and systemic pathology and 15 entities in oral pathology. Digitized slides are linked with still macro- and microscopic images, organized with clinical information into virtual cases and supplemented with text files, syllabus, PowerPoint presentations and animations on the web, serving additionally as material for individual studies. After their examinations, the students rated the use of the software, quality of the images, the ease of handling the images, and the effective use of virtual slides during the laboratory practicals. Responses were evaluated on a standardized scale. Because of the positive opinions and support from the students, the satisfaction surveys had shown a progressive improvement over the past 5 years. The WebMicroscope as a didactic tool for laboratory practicals was rated over 8 on a 1-10 scale for basic and systemic pathology and 9/10 for oral pathology especially as various students’ suggestions were implemented. Overall, the quality of the images was rated as very good.

Conclusions

An overwhelming majority of our students regarded a possibility of using virtual slides at their convenience as highly desirable. Our students and faculty consider the use of the virtual microscope for the study of basic as well as oral pathology as a significant improvement over the light microscope.
  相似文献   

13.
INTRODUCTION: Digital pathology includes the information technology that allows for the management of information, including data and images, generated in an anatomic pathology department. COST ACTION IC0604: The integration of digital slides in the electronic health record is one of the main objectives of COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH). Fostering use of medical informatics standards and adapting them to current needs is needed to manage efficiently extremely large medical images, like digital slide files. DIGITAL SLIDES IN PATHOLOGY: Digital slides can play a role in disease prevention, primary diagnosis, and second opinion. In all these tasks, automated image analysis can also be a most valuable tool. INTEROPERABILITY IN PATHOLOGY INFORMATION SYSTEMS: In order to achieve an efficient interoperability between pathology information systems with other clinical information systems, obtaining a seamless integration of pathology images (gross pictures and digital slides) with LIS-Pathology Information system in a web environment is an important task. Primary care information systems should also be included in the integration, since primary care centres play an essential role in the generation of clinical information and specimen collection. A common terminology, based in SNOMED CT is also needed. CONCLUSIONS: Main barrier in the integration of digital slides in pathology workflow and eHealth record is the cost of current digital slide scanners. Pathology information system vendors should participate in standardization bodies.  相似文献   

14.
OBJECTIVE: To develop and implement an Internet-based, automated image measurement system for immunohistochemically stained slides including fluorescence images in online and off-line modes. STUDY DESIGN: An image analyzing system was developed that automatically measures digitized images obtained from immunohistochemically stained slides. It is divided into a common server platform and a specific image quantification system based upon DIAS (University of Jena). After registration, the user fills in an input data form and attaches images to be measured. The server periodically transfers the data to the measurement system. The measurement works on dynamic thresholding and active sampling of objects visualized by fluorescence and conventional chromogens. It includes stereologic algorithms, object quantification, syntactic structure analysis and quality assurance. RESULTS: The system has been tested for diaminobenzidene, alkaline phosphatase and fluorescence images (FITC, etc.). The reproducibility and stability of the system are > 98%. The series of successfully measured images comprises > 1,000 images in total in the online and off-line modes. CONCLUSION: An Internet-based automated image measurement system has been developed that offers worldwide access to the major requests for quantification of immunohistochemically stained slides-tissue array analysis, nuclear stains (MIB, hormones), membrane stains (CerbB2), vascularization and fluorescence in situ hybridization.  相似文献   

15.
Telepathology, the practice of pathology at a long distance, has advanced continuously since 1986. Today, fourth-generation telepathology systems, so-called virtual slide telepathology systems, are being used for education applications. Both conventional and innovative surgical pathology diagnostic services are being designed and implemented as well. We have a successful experience in Egypt in applying the static & dynamic techniques in a pilot project between the Italian Hospital in Cairo (NPO) and the Civico Hospital in Palermo This project began in 2003 and continued till now. In 2004, centers in Venice, London and Pittsburgh participated actively in our project. During the past seven years we consulted on many problematic pathological cases with these different specialized pathological centers in Italy, UK & USA. In addition to the highly specialized scientific value of consulting on the cases and exchanging knowledge, we saved a lot of time and money and succeeded in providing our patients with a better medical service. In view of this success we have already established a new Digital Telepathology unit (DTU) in the pathology department, Cairo University, using the latest technique of telepathology which is Whole Slide Imaging (WSI) since one year. This unit is considered the first Digital pathology unit in all the universities of the whole Middle East. During the passed year we created a digital pathology library for the under graduate students using the WSI technique and changed the teaching method of the histopathology slides to be completely digital. We are building another digital pathology library (for post graduate candidates) which will be available to all pathology candidates in Egyptian universities & universities in the surrounding Arabic countries. We are also creating a digital pathology network between pathology centers in the Middle East for exchanging knowledge & telepathology.  相似文献   

16.
Telepathology is the diagnostic work of a pathologist from a distance and includes all specific fields of diagnostic pathology, such as frozen section services, expert consultation, cytometric and histometric measurement, and continuous education. For about 15 years experience has been collected at several universities in the United States and Europe based upon analog telephone lines (9.2 kbaud), digitized lines (ISDN, 64 kbaud), broad band connections (1.5 Mbaud) and the World Wide Web (28 kbaud). Potential use can be expected in the application of telepresentation, remote slide preparation, remote central diagnostics and telediscussion. The transfer of still images is well developed; that of live images is used in only a few institutions for frozen section services. The image quality and spatial resolution as well as the transfer speed are sufficient for expert consultations, morphometric measurements, quality assurance and education. All applications focus on discontinuous work flow. Although the European Community focuses on user needs and standardization aspects of telepathology by sponsoring a widespread telepathology project (Europath), implementation of telepathology into routine application in the continuous work flow has still to be developed. The technical equipment has still to be adjusted to the labor flow charts in routine pathologic diagnostic procedures. Telepathology seems to be the appropriate technique to offer both improvement in diagnostic quality and inclusion of the "control institution" into diagnostic responsibility.  相似文献   

17.
Pathologists have used light microscopes and glass slides to interpret the histologic appearance of normal and diseased tissues for more than 150 years. The quality of both microtomes used to cut tissue sections and microscopes has improved significantly during the past few decades, but the process of rendering diagnoses has changed little. By contrast, major advances in digital technology have occurred since the introduction of hand held electronic devices, including the development of whole slide imaging (WSI) systems with software packages that can convert microscope images into virtual (digital) slides that can be viewed on computer monitors and via the internet. To date, however, these technological developments have had minimal impact on the way pathologists perform their daily work, with the exception of using computers to access electronic medical records and scholarly web sites for pertinent information to assist interpretation of cases. Traditional practice is likely to change significantly during the next decade, especially since the Federal Drug Administration in the USA has approved the first WSI system for routine diagnostic practice. I review here the development and slow acceptance of WSI by pathology departments. I focus on recent advances in validation of WSI systems that is required for routine diagnostic reporting of pathology cases using this technology.  相似文献   

18.
19.
The present paper reports our experience with, and our opinion of static telepathology as applied to neuropathology by means of the PHAROS acquisition system and conventional telephone data transmission (modem). The classical procedure of expert consultation based on surface mailing of histological slides is routinely performed, especially in highly specialized fields of pathology. Telepathology is an easy means of sharing scientific expertise at international level and could thus improve diagnosis particularly in neuropathology, where certain tumor types are very rare and complex to diagnose. Dynamic telepathology allows the referring pathologist to capture by himself images supporting their diagnosis. Using static telepathology the pathologist could be limited in diagnosis by problems in fields selection. We devoted a whole year to collecting all the technical parameters characterizing the use of digitized neuropathological data files in order to investigate the feasibility of telepathology and the extent to which its use could improve diagnoses. Our results on a series of 38 histological brain examinations illustrate how we successfully established an international connection between two departments of pathology in Belgium and the USA. The referring pathologists gave diagnoses in 35 cases and deferred only 3. Despite a time-consuming procedure for the telepathology session of a few cases, this tool provides easy access to expert diagnosis and real-time discussion, both of which are of considerable interest and offer significant improvements in neuropathology.  相似文献   

20.

Background

Digital pathology, i.e., applications of digital information technologies to pathology practice, has been expanding in the recent decades and the mode of pathology diagnostic practice is changing with enhanced precision. In the present study the changing processes of digital pathology in Japan were investigated and trends to future were discussed.

Methods

The changing status of digital pathology was investigated through reviewing the records of annual meetings of the Japanese Research Society of Telepathology and Pathology Informatics (JRST-PI) and of the Japanese pathology related medical and informatics journals. The results of the Japanese questionnaire survey conducted in 2008-2009 on telepathology and virtual slide were also reviewed. In addition effectiveness of an experimental automatic pathology diagnostic aid system using computer artificial intelligence was investigated by checking its rate of correct diagnosis for given prostate carcinoma digital images.

Results

Telepathology played a central role in the development of digital pathology in Japan. Both macroscopic and microscopic pathology digital images were routinely generated and used for diagnostic purposes in major hospitals. Virtual slide (VS) digital images were used first for education then for conference, consultation and also gradually for routine diagnosis and telepathology. The experimental automatic diagnostic aid system achieved the rate of correct diagnosis around 95% for prostate carcinoma and its use for automatic mapping of cancerous areas in a given tissue image was successful.

Conclusions

Advance in the digital information technologies gave revolutionary impacts on pathology education, conference, consultation, diagnosis, telepathology and also on pathology diagnostic procedures in Japan. The future will be bright for pathologists by the advanced digital pathology but we should pay attention to make the technologies and their effects under our control.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号