首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

3.
During the past 20 years, cystathionine beta-synthase (CBS) deficiency has been detected in the former Czechoslovakia with a calculated frequency of 1:349,000. The clinical manifestation was typical of homocystinuria, and about half of the 21 patients were not responsive to pyridoxine. Twelve distinct mutations were detected in 30 independent homocystinuric alleles. One half of the alleles carried either the c.833 T-->C or the IVS11-2A-->C mutation; the remaining alleles contained private mutations. The abundance of five mutant mRNAs with premature stop codons was analyzed by PCR-RFLP. Two mRNAs, c.828_931ins104 (IVS7+1G-->A) and c.1226 G-->A, were severely reduced in the cytoplasm as a result of nonsense-mediated decay. In contrast, the other three mRNAs-c.19_20insC, c.28_29delG, and c.210_235del26 (IVS1-1G-->C)-were stable. Native western blot analysis of 14 mutant fibroblast lines showed a paucity of CBS antigen, which was detectable only in aggregates. Five mutations-A114V (c.341C-->T), A155T (c.463G-->A), E176K (c.526G-->A), I278T (c.833T-->C), and W409_G453del (IVS11-2A-->C)-were expressed in Escherichia coli. All five mutant proteins formed substantially more aggregates than did the wild-type CBS, and no aggregates contained heme. These data suggest that abnormal folding, impaired heme binding, and aggregation of mutant CBS polypeptides may be common pathogenic mechanisms in CBS deficiency.  相似文献   

4.
The role of inosine triphosphatase (ITPase) in adverse drug reactions associated with thiopurine therapy is still under heavy debate. Surprisingly, little is known about the way thiopurines are handled by ITPase. We studied the effect of ITPA polymorphisms on the handling of inosine triphosphate (ITP) and thioinosine triphosphate (TITP) to gain more insight into this phenomenon. Human erythrocyte ITPase activity was measured by incubation with ITP using established protocols, and the generated inosine monophosphate (IMP) was measured using ion-pair RP-HPLC. Molecular analysis of the ITPA gene was performed to establish the genotype. Kinetic parameters were established for the two common polymorphisms for both ITP and TITP as substrates using the above mentioned protocol. Both ITP and TITP are substrates for ITPase and their enzyme activities are comparable. Substrate binding is not altered in the different ITPA polymorphisms. It is shown that the velocity of pyrophosphohydrolysis is compromised when the c.94C > A polymorphism is present, both in the heterozygous and in the homozygous state. TITP is handled by ITPase in a similar way as for ITP, which implies that TITP will accumulate in the erythrocytes of patients with an ITPase deficiency, resulting in adverse drug reactions (ADRs) on thiopurine therapy. In carriers of ITPA polymorphisms, the matter is more complex and the development of ADR may depend on additional epigenetic factors rather than on the accumulation of thiopurinenucleotides.  相似文献   

5.
The enzyme inosine triphosphate pyrophosphatase (ITPase) catalyses the pyrophosphohydrolysis of ITP to IMP. ITPase deficiency is a clinically benign autosomal recessive condition characterised by the abnormal accumulation of ITP in erythrocytes. A deficiency of ITPase may predict adverse reactions to therapy with the thiopurine drug 6-mercaptopurine and its prodrug azathioprine. In this study, we examine the frequencies of ITPA polymorphisms in 100 healthy Japanese individuals. The allele frequency of the 94C > A variant in the Japanese sample was 0.135 (Caucasian allele frequency 0.06). The IV2 + 21A > C polymorphism was not found in Japanese (Caucasian allele frequency 0.130). Allele frequencies of the 138G > A, 561G > A and 708G > A polymorphisms were 0.57, 0.18 and 0.06 respectively in the Japanese population, and with the exception of the 138G > A polymorphism, similar to allele frequencies in Caucasians.  相似文献   

6.
Lysinuric protein intolerance (LPI) is a rare autosomal recessive defect of cationic amino acid transport caused by mutations in the SLC7A7 gene. We report the genomic structure of the gene and the results of the mutational analysis in Italian, Tunisian, and Japanese patients. The SLC7A7 gene consists of 10 exons; sequences of all of the exon-intron boundaries are reported here. All of the mutant alleles were characterized and eight novel mutations were detected, including two missense mutations, 242A-->C (M1L) and 1399C-->A (S386R); a nonsense mutation 967G-->A (W242X); two splice mutations IVS3 +1G-->A and IVS6 +1G-->T; a single-base insertion, 786insT; and two 4-bp deletions, 455delCTCT and 1425delTTCT. In addition, a previously reported mutation, 1625insATCA, was found in one patient. It is noteworthy that 242A-->C causes the change of Met1 to Leu, a rare mutational event previously found in a few inherited conditions. We failed to establish a genotype/phenotype correlation. In fact, both intrafamilial and interfamilial phenotypic variability were observed in homozygotes for the same mutation. The DNA-based tests are now easily accessible for molecular diagnosis, genetic counseling, and prenatal diagnosis of LPI.  相似文献   

7.
Distribution of glucose-6-phosphate dehydrogenase mutations in Southeast Asia   总被引:11,自引:0,他引:11  
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.  相似文献   

8.
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil and thymine, as well as of the widely used chemotherapeutic drug 5-fluorouracil (5FU). Analysis of the DPD gene ( DPYD ) in two patients presenting with complete DPD deficiency and the parents of an affected child showed the presence of three novel mutations, including one splice site mutation IVS11 + 1G-->T and the missense mutations 731A-->C (E244V) and 1651G-->A (A551T). The G-->T mutation in the invariant GT splice donor site flanking exon 11 (IVS11 + 1G-->T) created a cryptic splice site within exon 11. As a consequence, a 141-bp fragment encoding the aminoacid residues 400-446 of the primary sequence of the DPD protein was missing in the mature DPD mRNA. Analysis of the crystal structure of pig DPD suggested that the E244V mutation might interfere with the electron flow between NADPH and the pyrimidine binding site of DPD. The A551T point mutation might prevent binding of the prosthetic group FMN and affect folding of the DPD protein. The identification of these novel mutations in DPYD will allow the identification of patients with an increased risk of developing severe 5FU-associated toxicity.  相似文献   

9.
Inosine triphosphate pyrophosphatase (ITPase) deficiency occurs with polymorphic frequencies in Caucasians and results in the benign accumulation of the inosine nucleotide ITP. In 62 patients treated with azathioprine for inflammatory bowel disease, the ITPA 94C>A deficiency-associated allele was significantly associated with adverse drug reactions (OR 4.2, 95% CI 1.6-11.5, p = 0.0034). Significant associations were found for flu-like symptoms (OR 4.7, 95% CI 1.2-18.1, p = 0.0308), rash (OR 10.3, 95% CI 4.7-62.9, p = 0.0213) and pancreatitis (OR 6.2, CI 1.1-32.6, p = 0.0485). Polymorphism in the ITPA gene thus predicts AZA intolerance. Alternative immunosuppressive drugs, particularly 6-thioguanine, should be considered for AZA-intolerant patients with ITPase deficiency.  相似文献   

10.
Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer.  相似文献   

11.
12.
13.
14.
In Gaucher disease patients, over 100 disease-causing mutations have been identified. For identification of the 1504C-->T (R463C) mutation it is common to use PCR-restriction fragmentation analysis using the restriction enzyme MspI. In the present study we investigated the reliability of this approach because accurate determination of genotypes is important in genotype-phenotype correlations. A simple modification, i.e. using the restriction enzyme HphI instead of MspI, revealed that type I and II Gaucher disease patients who had previously been identified as carrying the 1504C-->T mutation in fact carried the 1505G-->A (IVS10(-1)G-->A) mutation. Sequencing of the appropriate fragment confirmed this. The PCR method easily differentiates between these two mutations in Gaucher disease patients, thus circumventing the need for sequencing procedures. The phenotypes of the patients found to be carrying the 1505G-->A mutation are also described.  相似文献   

15.
Disease causing aberrations in both tuberous sclerosis predisposing genes, TSC1 and TSC2, comprise nearly every type of alteration with a predominance of small truncating mutations distributed over both genes. We performed an RNA based screening of the entire coding regions of both TSC genes applying the protein truncation test (PTT) and identified a high proportion of unusual splicing abnormalities affecting the TSC2 gene. Two cases exhibited different splice acceptor mutations in intron 9 (IVS9-15G-->A and IVS9-3C-->G) both accompanied by exon 10 skipping and simultaneous usage of a cryptic splice acceptor in exon 10. Another splice acceptor mutation (IVS38-18A-->G) destroyed the putative polypyrimidine structure in intron 38 and resulted in simultaneous intron retention and usage of a downstream cryptic splice acceptor in exon 39. Another patient bore a C-->T transition in intron 8 (IVS8+281C-->T) activating a splice donor site and resulting in the inclusion of a newly recognised exon in the mRNA followed by a premature stop. These splice variants deduced from experimental results are additionally supported by RNA secondary structure analysis based on free energy minimisation. Three of the reported splicing anomalies are due to sequence changes remote from exon/intron boundaries, described for the first time in TSC. These findings highlight the significance of investigating intronic changes and their consequences on the mRNA level as disease causing mutations in TSC.  相似文献   

16.
Fran?ois-Neetens fleck corneal dystrophy (CFD) is a rare, autosomal dominant corneal dystrophy characterized by numerous small white flecks scattered in all layers of the stroma. Linkage analysis localized CFD to a 24-cM (18-Mb) interval of chromosome 2q35 flanked by D2S2289 and D2S126 and containing PIP5K3. PIP5K3 is a member of the phosphoinositide 3-kinase family and regulates the sorting and traffic of peripheral endosomes that contain lysosomally directed fluid phase cargo, by controlling the morphogenesis and function of multivesicular bodies. Sequencing analysis disclosed missense, frameshift, and/or protein-truncating mutations in 8 of 10 families with CFD that were studied, including 2256delA, 2274delCT, 2709C-->T (R851X), 3120C-->T (Q988X), IVS19-1G-->C, 3246G-->T (E1030X), 3270C-->T (R1038X), and 3466A-->G (K1103R). The histological and clinical characteristics of patients with CFD are consistent with biochemical studies of PIP5K3 that indicate a role in endosomal sorting.  相似文献   

17.
18.
19.
Ye BC  Zhang Z  Lei Z 《Genetic testing》2007,11(1):75-83
Thalassemia is endemic to many regions in southern China. The screening of severe determinants of thalassemia is of critical importance in management and control of thalassemia. We designed a protocol based on microarray technology to screen for a spectrum of alpha/beta-globin gene mutations in the Chinese population. A total of 38 probes were capable of screening 98% of alpha/beta-globin gene mutations in the China population, including 16 mutations of beta-globin [beta(41-42)(-TCTT), IVSII-654(C-->T), beta17(A-->T), -28(A-->G), beta(71-72)(+A), beta(71-72)(+T), HbE26(G-->A), -29(A-->G), beta(27-28)(+C), IVSI-1(G-->T), IVSI-5(G-->C), beta(14-15)(+G), IVSII-5(G-->C), beta41(+T), 37(G-->A), and beta43(G-->T)] and five mutations of alpha/beta[three deletions of -alpha;(3.7), -alpha(4.2), and --(SEA); two nondeletions of alpha(Quong Sze) codon alpha125(T-->C) and alpha(Constant Spring) codon alpha142(T-->C)]. Multiplex PCR products were amplified from human genomic DNA and allowed to hybridize with the oligonucleotide array. alpha/beta-Globin genotypes were assigned by quantitative analysis of the hybridization results. The protocol, standardized by analysis of 100 thalassemia samples with known mutations and 13 recombinant plasmids, was 100% reliable in genotyping all mutant alleles. In subsequent screening of 2,030 Chinese with unknown mutations, the protocol was 100% accurate. This method provides unambiguous detection of complex combinations of heterozygous, compound heterozygous, and homozygous alpha/beta-thalassemia genotypes. The protocol was also flexible, detecting globin gene mutations from different population groups.  相似文献   

20.
The enzyme inosine triphosphate pyrophosphatase (ITPase) catalyses the pyrophosphohydrolysis of ITP to IMP. ITPase deficiency is a clinically benign autosomal recessive condition characterised by the abnormal accumulation of ITP in erythrocytes. A deficiency of ITPase may predict adverse reactions to therapy with the thiopurine drug 6‐mercaptopurine and its prodrug azathioprine. In this study, we examine the frequencies of ITPA polymorphisms in 100 healthy Japanese individuals. The allele frequency of the 94C > A variant in the Japanese sample was 0.135 (Caucasian allele frequency 0.06). The IV2 + 21A > C polymorphism was not found in Japanese (Caucasian allele frequency 0.130). Allele frequencies of the 138G > A, 561G > A and 708G > A polymorphisms were 0.57, 0.18 and 0.06 respectively in the Japanese population, and with the exception of the 138G > A polymorphism, similar to allele frequencies in Caucasians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号