首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of glucose-6-phosphate dehydrogenase mutations in Southeast Asia   总被引:11,自引:0,他引:11  
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.  相似文献   

2.
Ye BC  Zhang Z  Lei Z 《Genetic testing》2007,11(1):75-83
Thalassemia is endemic to many regions in southern China. The screening of severe determinants of thalassemia is of critical importance in management and control of thalassemia. We designed a protocol based on microarray technology to screen for a spectrum of alpha/beta-globin gene mutations in the Chinese population. A total of 38 probes were capable of screening 98% of alpha/beta-globin gene mutations in the China population, including 16 mutations of beta-globin [beta(41-42)(-TCTT), IVSII-654(C-->T), beta17(A-->T), -28(A-->G), beta(71-72)(+A), beta(71-72)(+T), HbE26(G-->A), -29(A-->G), beta(27-28)(+C), IVSI-1(G-->T), IVSI-5(G-->C), beta(14-15)(+G), IVSII-5(G-->C), beta41(+T), 37(G-->A), and beta43(G-->T)] and five mutations of alpha/beta[three deletions of -alpha;(3.7), -alpha(4.2), and --(SEA); two nondeletions of alpha(Quong Sze) codon alpha125(T-->C) and alpha(Constant Spring) codon alpha142(T-->C)]. Multiplex PCR products were amplified from human genomic DNA and allowed to hybridize with the oligonucleotide array. alpha/beta-Globin genotypes were assigned by quantitative analysis of the hybridization results. The protocol, standardized by analysis of 100 thalassemia samples with known mutations and 13 recombinant plasmids, was 100% reliable in genotyping all mutant alleles. In subsequent screening of 2,030 Chinese with unknown mutations, the protocol was 100% accurate. This method provides unambiguous detection of complex combinations of heterozygous, compound heterozygous, and homozygous alpha/beta-thalassemia genotypes. The protocol was also flexible, detecting globin gene mutations from different population groups.  相似文献   

3.
Thermus thermophilus is an extremely thermophilic, aerobic, and gram-negative eubacterium that grows optimally at 70-75 degrees C, pH 7.5. In extremely high temperature environment, DNA damages in cells occur at a much higher frequency in thermophiles than mesophiles such as E. coli. When temperature rises, the deamination of cytosine residues in double-strand DNA is expected to increase greatly. T. thermophilus HB27 has two putative uracil-DNA glycosylase genes (udgA and udgB). Expression level of udgA gene was 2-3 times higher than that of udgB at 70, 74, and 78 degrees C when it was monitored by beta-glucosidase reporter assay. We developed hisD(3110), hisD(3113), hisD(3115), and hisD(174) marker allele that can specifically detect G:C-->A:T, C:G-->A:T, T:A-->A:T, and A:T-->G:C base-substitutions, respectively, by His(+) reverse mutations. We then disrupted udgA and udgB by thermostable kanamycin-resistant gene (htk) or pyrE gene insertion in each hisD background, and their spontaneous His(+) reversion frequencies were compared. A udgA,B double mutant showed a pronounced increase in G:C-->A:T reversion frequency compared with each single udg mutant, udgA or udgB. Estimated mutation rates of the udgA,B mutant cultured at 60, 70, and 78 degrees C were about 2, 12, and 117 His(+)/10(8)/generation, respectively. At 70 degrees C culture, increased ratio of the mutation rate compared with the udg(+) strain was 12-fold in udgA, 3-fold in udgB, and 56-fold in udgA,B mutant. On the other hand, no difference was observed in other mutations of C:G-->A:T, T:A-->A:T, and A:T-->G:C between udgA,B double mutant and the parent udg(+) strain. The present results indicated that gene products of udgB as well as udgA functioned in vivo to remove uracil in DNA and prevent G:C-->A:T transition mutations.  相似文献   

4.
5.
6.
During the past 20 years, cystathionine beta-synthase (CBS) deficiency has been detected in the former Czechoslovakia with a calculated frequency of 1:349,000. The clinical manifestation was typical of homocystinuria, and about half of the 21 patients were not responsive to pyridoxine. Twelve distinct mutations were detected in 30 independent homocystinuric alleles. One half of the alleles carried either the c.833 T-->C or the IVS11-2A-->C mutation; the remaining alleles contained private mutations. The abundance of five mutant mRNAs with premature stop codons was analyzed by PCR-RFLP. Two mRNAs, c.828_931ins104 (IVS7+1G-->A) and c.1226 G-->A, were severely reduced in the cytoplasm as a result of nonsense-mediated decay. In contrast, the other three mRNAs-c.19_20insC, c.28_29delG, and c.210_235del26 (IVS1-1G-->C)-were stable. Native western blot analysis of 14 mutant fibroblast lines showed a paucity of CBS antigen, which was detectable only in aggregates. Five mutations-A114V (c.341C-->T), A155T (c.463G-->A), E176K (c.526G-->A), I278T (c.833T-->C), and W409_G453del (IVS11-2A-->C)-were expressed in Escherichia coli. All five mutant proteins formed substantially more aggregates than did the wild-type CBS, and no aggregates contained heme. These data suggest that abnormal folding, impaired heme binding, and aggregation of mutant CBS polypeptides may be common pathogenic mechanisms in CBS deficiency.  相似文献   

7.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

8.
Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency   总被引:12,自引:0,他引:12  
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138G-->A, 561G-->A, 708G-->A) and two associated with ITPase deficiency (94C-->A, IVS2+21A-->C). Homozygotes for the 94C-->A missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94C-->A heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21A-->C homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94C-->A (allele frequency: 0.06), 24 were heterozygotes for IVS2+21A-->C (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21A-->C heterozygotes and 94C-->A/IVS2+21A-->C compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.  相似文献   

9.
Gas chromatography/isotope dilution-mass spectrometry with selected ion monitoring (GC/IDMS-SIM) was used to measure oxidised bases in hypoxanthine/xanthine oxidase/Fe3+/EDTA modified ss M13 mp18 phage DNA. A dose-dependent increase of oxidised bases content in DNA was observed with the biggest augmentation of FapyGua, thymine glycol and FapyAde. The amount of 8-OH-Gua was relatively high both in non-oxidised and oxidised DNA, and increased to the same extent as FapyAde and ThyGly. DNA oxidation caused a dramatic decrease in phage survival after transfection to E. coli. Survival was improved 2.8-fold after induction of the SOS system by UV irradiation of bacteria and mutation frequency of the lacZ gene in SOS conditions increased 7-fold over that in non-irradiated bacteria. Spectrum of mutations was different from those reported previously and mutations were distributed rather randomly within M13 lacZ sequence, which was in contrast to previous findings, where with non-chelated metal ions other types of mutations were found in several clusters. Thus, conditions of DNA oxidation and accessibility of metal ions for DNA bases might be important factors for generating different DNA damages and mutations. Major base substitutions found both in SOS-induced and non-induced E. coli but with higher mutation frequency in SOS-induced cells were C-->A (approximately 20-fold increase in SOS-conditions), G-->A (9-fold increase) and G-->C (4.5-fold increase). Very few G-->T transitions were found. A particularly large group of A-->G transitions appeared only in SOS-induced bacteria and was accompanied by augmentation of FapyAde content in the phage DNA with undetectable 2-OH-Ade. It is then possible that imidazole ring-opened adenine mimics guanine during DNA replication and pairs with cytosine yielding A-->G transitions in SOS-induced bacteria.  相似文献   

10.
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.  相似文献   

11.
Sequence analysis has been performed on the DNA of 13 glucose-6-phosphate dehydrogenase (G6PD) deficient males from Hawaii, 6 of Filipino, 6 of Laotian, and 1 of Chinese extraction. Four different mutations were found: A-->T at cDNA nt 835, G-->A at nt 871, C-->T at nt 1360, and G-->A at nt 1388. The mutations at nt 835 and nt 1360 have not been described previously, and the latter, in particular, appears to be relatively common. The nt 1360 mutation changes the same codon as is altered in a previously described mutation, G6PD Andalus.  相似文献   

12.
13.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by extracellular neuritic plaques and intracellular neurofibrillary tangles in brain parenchyma. Alpha-1-antichymotrypsin (ACT) is a component of plaque cores, can bind to Abeta, and has been proposed as a possible candidate gene for AD susceptibility. The genetic association between the ACT codon -17*A allele of the signal peptide polymorphism and AD has been shown in some, but not in all studies. One hypothesis is that the ACT codon -17*A allele is in linkage disequilibrium with unknown functional mutation(s) in the ACT gene. This study was undertaken to identify new mutation(s) in the ACT gene by PCR-SSCP-sequencing and, in conjunction with known mutations, to assess their role in affecting the risk of AD. A total of seven new point mutations were observed: 5'UTR(A-->G), Asp128Asn(G-->A), Ser250Ser(C-->T), Leu301Pro(T-->C), Thr324Thr(A-->G), G-->A in intron 4, and 3'UTR C-->A. Of these, mutations at codon 250, codon 324, intron 4 and 3'UTR showed a frequency of 1% or more. Of the known mutations, Thr-17Ala(A-->G), Lys76Lys(A-->G) and Leu241Leu(G-->A) occur at a polymorphic level. The ACT codon -17*A allele was associated with increased risk of AD (OR for AA vs TT: 1.71; 95% CI: 1.16-2.53; P=0.007), especially in the presence of the APOE*4 allele (OR for AA vs TT: 2.35; 95% CI: 1.13-4.85; P=0.02). The codon 241*A allele and the codon 250*T allele were associated with protective effects against AD (OR: 0.36; 95% CI: 0.13-0.86; P=0.02) (OR:0.39; 95% CI: 0.18-0.85; P=0.02). irrespective of the APOE*4 status. The codon 324*G allele was associated with a marginal protective effect (OR:0.57; 95% CI: 0.26-1.26; P=0.17). While the codon 241*A allele was in linkage disequilibrium with the codon -17*A allele, the codon 250*T and codon 324*G alleles were non-randomly associated with the codon -17*T allele. In contrast, the codon 76*G (OR:1.34; 95% CI: 0.92-1.95; P=0.13), codon 227*G (OR:3.96; 95% CI: 0.83-18.8; P=0.08) and intron 4*G (OR:1.47; 95% CI: 0.88-2.29; P=0.15) alleles were associated with a modest risk of AD, and all were in linkage disequilibrium with the codon -17*A allele. EH-based haplotype analysis showed that certain haplotypes are associated with either higher or lower risk of AD. Our data indicate that the ACT gene harbors several potentially important variable sites, which are associated with either an increased or decreased risk of AD. The non-random combination of risk and protective alleles may explain, in part, why the association studies regarding the ACT codon -17*A have been inconsistent, especially if the frequency of other ACT mutations varies between populations.  相似文献   

14.
氟氏链霉菌离子束注入突变谱的分析   总被引:1,自引:0,他引:1  
用低能N+离子束注入转谷氨酰胺酶产生菌氟氏链霉菌后,通过试验,初步确定了注入的效应曲线,获得了一系列突变菌株。提取原始菌株和突变菌株的DNA,采用PCR反应分段扩增出转谷氨酰胺酶基因进行单链构象多态性分析(SSCP),并将特异性条带克隆测序进行基因突变型的鉴定,分析离子束注入引起链霉菌基因的基因突变类型及特点。结果显示:碱基变异的类型包括转换、颠换和缺失。在检测到的24个碱基突变中,主要是碱基的置换(87.5%),碱基缺失的比例比较小(12.5%)。在碱基置换中,转换的频率(58.3%)高于颠换的频率(29.2%)。转换主要以C→T,A→G为主,颠换以G→T,C→G为主。此外构成DNA的4种碱基均可以被离子束辐照诱发变异,其中胞嘧啶发生突变的频率较高。  相似文献   

15.
Although N-nitrosodiethylamine (NDEA) is a potent carcinogen in rodents and a probable human carcinogen, little attempts were made to characterize its mutation spectrum in higher eukaryotes. We have compared forward mutation frequencies at multiple (700) loci with the mutational spectrum induced at the vermilion gene of Drosophila, after exposure of post- and pre-meiotic male germ cells to NDEA. Among 30 vermilion mutants collected from post-meiotic stages were 12 G:C-->A:T transitions (40%), 8 A:T-->T:A transversions (27%), and 4 structural rearrangements (13%). The remainder were three A:T-->G:C transitions, two G:C-->C:G transversions and one G:C-->T:A transversion. The results show that although NDEA induces predominantly transitions (40% G:C-->A:T and 10% A:T-->G:C), the frequencies of transversions (37%, of which 27% of A:T-->T:A transversions) and especially of rearrangements (13%) are remarkably high. This mutation spectrum differs significantly from that produced by the direct-ethylating agent N-ethylnitrosourea (ENU), although the relative distribution of ethylated DNA adducts is similar for both carcinogens. These differences, in particular the occurrence of rearrangements, are most likely the result of the requirement of NDEA for bioactivation. Since all four rearrangements were collected from non-metabolizing spermatozoa (or late spermatids), it is hypothesized that they derived from acetaldehyde, a stable metabolite of NDEA. Due to its cytotoxicity, attempts to isolate vermilion mutants from NDEA-exposed pre-meiotic cells were largely unsuccessful, because only two mutants (one A:T-->G:C transition and one 1bp insertion) were collected from those stages. Our results show that NDEA is capable of generating carcinogenic lesions other than base pair substitutions.  相似文献   

16.
X-linked retinitis pigmentosa (XLRP) results from mutations in a number of loci, including RP2 at Xp11.3, and RP3 at Xp21.1. RP2 and RP3 genes have been identified by positional cloning. RP2 mutations are found in about 10% of XLRP patients. We performed a mutational screening of RP2 gene inpatients belonging to seven unrelated families in linkage with the RP2 locus. SSCP analysis detected three conformation variants, within exon 2 and 3. Direct sequencing of exon 2, disclosed a G-->A transition at nucleotide 449 (W150X), and a G-->T transversion in position 547 (E183X). Sequence analysis of exon 3 variant revealed an insertion (853/854insG), leading to a frameshift. In this patient, we detected an additional sequence alteration (A-->G at nucleotide 848, E283G). Each mutation was co-segregating with the disease in the affected family members available for the study. These mutations are expected to introduce a stop codon within the RP2 coding sequence probably resulting in a truncated or unstable protein.  相似文献   

17.
Mo QH  Zhu H  Li LY  Xu XM 《Genetic testing》2004,8(3):257-262
beta-thalassemia is one of the most common inherited diseases with incidence varying between 3% and 10% in the high-prevalence regions of South China. The molecular defects are mostly due to single-nucleotide substitutions, minor insertions, and deletions in the beta-globin gene. Large-scale population genetic screening combined with prenatal diagnosis is necessary for the effective prevention of this disease. We present a single base extension (SBE) method based on homogenous fluorescence polarization (FP) for simultaneous detection of the eight most common causative mutations [CDs 41-42 (-TCTT), IVS-2-654 (C-->T), -28 (A-->G), CD17 (A-->T), CD 71/72 (+A), CD26 (G-->A), -29 (A-->G), and CD43 (G-->T)] in the beta-globin gene in a Chinese population. This assay has been validated by a blind experiment with 100 clinical samples previously characterized by reverse dot-blot and direct sequencing. The results demonstrate that this high-throughput method is simple, reliable, and cost effective. We expect this approach can be used in large-scale genetic screening for beta-thalassemia.  相似文献   

18.
东方(鱼屯)生长激素基因内含子2的克隆与多态性分析   总被引:1,自引:0,他引:1  
黄军  严美姣  陈国宏  许盛海  鞠慧萍  程金花  吴云良 《遗传》2007,29(11):1378-1384
以暗纹东方鲀(Takifugu obscurus)、红鳍东方鲀(Takifugu rubripes)、星点东方鲀(Takifugu niphobles)共82个个体为对象,运用PCR产物电泳检测、单链构向多态性(SSCP)技术和克隆测序技术检测到生长激素(Growth Hormone, GH)基因内含子2的长度和序列多态性。结果表明,3个群体中GH基因内含子2存在9种长度类型,分别为A、B、C、D、E、F、G、H、I,变异频率达到24.22%。对这9种序列进行比对分析,(1)发现9种长度类型A、G、T、C的平均百分比为17.15%、20.77%、37.38%、24.70%,其中G+C(45.47%)含量与A+T(54.53%)的含量差异不显著;(2)9种序列分别长351 bp、327 bp、319 bp、303 bp、295 bp、291 bp、287 bp、283 bp和271 bp,引起长度变化的主要原因是短串联序列TCTG的重复 (重复次数从20到40不等); (3)发现4个突变位点,其中3个转换位点为83(C→T),101(A→G)296(G→A),一处颠换位点103(C→A)。用UPGMA法构建分子系统树,发现DD与II首先聚为一类,然后依次与GG、AA聚为一大类,BB与CC,EE与HH分别聚为一类,最后再与FF聚为一大类,由此可见GH基因内含子2在品种间的差异远大于品种内差异。  相似文献   

19.
To investigate the mutation spectrum of a well-known mutagen, methylglyoxal, and the influence of nucleotide excision repair (NER) on methylglyoxal-induced mutations, we treated wild-type and NER-deficient (uvrA or uvrC) Escherichia coli strains with methylglyoxal, and analyzed mutations in the chromosomal lacI gene. In the three strains, the cell death and the mutation frequency increased according to the dose of methylglyoxal added to the culture medium. The frequencies of methylglyoxal-induced base-pair substitutions were higher in the NER-deficient strains than in the wild-type strain, in the presence and absence of mucAB gene. Paradoxically, the frequency of methylglyoxal-induced TGGC frameshifts was higher in the wild-type strain than in the NER-deficient strains. When the methylglyoxal-induced mutation spectra in the presence and absence of mucAB gene are compared, the ratios of base-pair substitutions to frameshifts were increased by the effects of mucAB gene. In the three strains, more than 75% of the base-pair substitutions occurred at G:C sites, independent of the mucAB gene. When the mucAB gene was present, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. When the mucAB gene was absent, the predominant mutations differed in the three strains: in the wild-type and uvrC strains, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions, while in the uvrA strains, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. These results suggest that NER may be involved in both the repair and the fixation of methylglyoxal-induced mutations.  相似文献   

20.
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号