首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bryophyte communities can exhibit similar structural and taxonomic diversity as vascular plant communities, just at a smaller scale. Whether the physiological diversity can be similarly diverse, and whether it can explain local abundance patterns is unknown, due to a lack of community‐wide studies of physiological traits. This study re‐analyzed data on photosynthesis‐related traits (including the nitrogen, phosphorus and chlorophyll concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies) of 27 bryophyte species in a subalpine old‐growth fir forest on the eastern Tibetan Plateau. We explored differences between taxonomic groups and hypothesized that the most abundant bryophyte species had physiological advantages relative to other subdominant species. Principal component analysis (PCA) was used to summarize the differences among species and trait values of the most abundant and other co‐occurring subdominant species. Species from the Polytrichaceae were separated out on both PCA axes, indicating their high chlorophyll concentrations and photosynthetic capacities (axis 1) and relatively high‐light requirements (axis 2). Mniaceae species also had relatively high photosynthetic capacities, but their light saturation points were low. In contrast, Racomitrium joseph‐hookeri and Lepidozia reptans, two species with a high shoot mass per area, had high‐light requirements and low nutrient and chlorophyll concentrations and photosynthetic capacities. The nutrient concentrations, photosynthetic capacities, and photosynthetic nutrient use efficiencies of the most abundant bryophyte species did not differ from co‐occurring subdominant species. Our research confirms the links between the photosynthesis‐related traits and adaptation strategies of bryophytes. However, species relative abundance was not related to these traits.  相似文献   

2.

Premise of the Study

The pygmy forest, a plant community of severely stunted conifers and ericaceous angiosperms, occurs on patches of highly acidic, nutrient‐poor soils along the coast of Northern California, USA. This system is an excellent opportunity to study the effect of severe nutrient deficiency on leaf physiology in a naturally‐occurring ecosystem. In this study, we seek to understand the physiological mechanisms stunting the plants' growth and their implications for whole plant function.

Methods

We measured 14 traits pertaining to leaf photosynthetic function or physical structure on seven species. Samples were taken from the pygmy forest community and from conspecifics growing on higher‐nutrient soils, where trees may grow over 30 m tall.

Key Results

Pygmy plants of most species maintained similar area‐based photosynthetic and stomatal conductance rates to conspecific controls, but had lower specific leaf area (leaf area divided by dry weight), lower percent nitrogen, and less leaf area relative to xylem growth. Sequoia sempervirens, a species rare in the pygmy forest, had a categorically different response from the more common plants and had remarkably low photosynthetic rates.

Conclusions

Pygmy plants were not stunted by low photosynthetic rates on a leaf‐area basis; instead, several species had restricted whole‐plant photosynthesis due to low leaf area production. Pygmy plants of all species showed signs of greater carbon investment in their leaves and higher production of nonphotosynthetic leaf tissue, further contributing to slow growth rates.  相似文献   

3.
Over the last decade, bamboo has emerged as an interesting plant for the treatment of various polluted waters using plant-based wastewater treatment systems. In these systems, nitrogen and phosphorous concentrations in wastewater can exceed plant requirements and potentially limit plant growth. The effects of two nutrient rates on the growth of seven bamboo species were assessed in a one-year experiment: Dendrocalamus strictus, Thyrsostachys siamensis, Bambusa tuldoides, Gigantochloa wrayi, Bambusa oldhamii, Bambusa multiplex and Bambusa vulgaris. Nutrient rates were applied with a 20:20:20 NPK fertilizer as 2.6 and 13.2 t.ha.yr?1NPK to three-year-old bamboo planted in 70 L containers. Morphological characters, photosynthetic responses, and NPK content in bamboo tissues were investigated. Under high-nutrient supply rate, the main trend observed was an increase of culm production but the culms’ diameters were reduced. For the seven species, the aboveground biomass yield tended to increase with high-nutrient rate. Increasing in nutrient rates also improved the photosynthetic activity which is consistent with the increase of nitrogen and phosphorus contents measured in plant tissues. All the bamboo species tested appears suitable for wastewater treatment purposes, but the species Bambusa oldhamii and Gigantochloa wrayi showed the higher biomass yield and nutrient removal.  相似文献   

4.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

5.
Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m−2 a−1. While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A max), carboxylation (V cmax), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A max for C. calyculata, and higher V cmax in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH4) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.  相似文献   

6.
干热河谷车桑子光合生理特性对氮磷添加的响应   总被引:1,自引:0,他引:1  
王雪梅  刘泉  闫帮国  赵广  刘刚才 《生态学报》2019,39(22):8615-8629
氮磷养分是限制干热河谷植物生长的重要元素,不同土壤上植物受到的养分限制类型不同。光合作用作为植物生长发育的基础,不同土壤上氮磷养分添加对干热河谷植物光合生理特征的影响还没有报道。因此,以干热河谷优势植物——车桑子为研究对象,在元谋县不同海拔处采集土壤,设置加氮(+N)、加磷(+P)、氮磷同时添加(+NP)和不添加(CK)四个处理,研究车桑子光合响应曲线、叶绿素含量和叶绿素荧光特性对氮、磷添加的响应规律,并探讨光合响应特征与车桑子生长的关系:研究结果显示:1)不同海拔土壤上,车桑子光合生理特性对氮磷添加具有不同的响应。在低海拔燥红土上,氮添加处理(+N和+NP)提高了车桑子净光合速率、叶绿素含量和PSII活性;中海拔紫色土上,+NP促进了车桑子光合速率和叶绿素含量的提高;高海拔黄棕壤上,+N处理降低了车桑子净光合速率和PSII活性,而磷添加处理(+P和+NP)提高了车桑子净光合速率。2)车桑子光合特性对养分添加的响应取决于土壤的养分限制类型,限制性养分添加可以提高车桑子的净光合速率。3)燥红土上+P以及黄棕壤上+N对PSⅡ最大光化学效率(Fv/Fm)的降低更大程度上归于可变荧光Fv的减少而不是最小荧光F0的增加,可减少养分限制对光系统II造成的伤害。4)三种土壤类型上车桑子的叶绿素含量和组成差异极显著,相比于燥红土和紫色土,黄棕壤上车桑子的叶绿素含量显著更高,而叶绿素a/b显著更低。综上,本研究结果表明,车桑子光合能力受到氮和磷的共同调节,不同土壤上光合生理特性的响应可增强植物对限制性养分的适应性,影响植物生长发育。  相似文献   

7.
Herbivory is one of the key drivers shaping plant community dynamics. Herbivores can strongly influence plant productivity directly through defoliation and the return of nutrients in the form of dung and urine, but also indirectly by reducing the abundance of neighbouring plants and inducing changes in soil processes. However, the relative importance of these processes is poorly understood. We, therefore, established a common garden experiment to study plant responses to defoliation, dung addition, moss cover, and the soil legacy of reindeer grazing. We used an arctic tundra grazed by reindeer as our study system, and Festuca ovina, a common grazing‐tolerant grass species as the model species. The soil legacy of reindeer grazing had the strongest effect on plants, and resulted in higher growth in soils originating from previously heavily‐grazed sites. Defoliation also had a strong effect and reduced shoot and root growth and nutrient uptake. Plants did not fully compensate for the tissue lost due to defoliation, even when nutrient availability was high. In contrast, defoliation enhanced plant nitrogen concentrations. Dung addition increased plant production, nitrogen concentrations and nutrient uptake, although the effect was fairly small. Mosses also had a positive effect on aboveground plant production as long as the plants were not defoliated. The presence of a thick moss layer reduced plant growth following defoliation. This study demonstrates that grasses, even though they suffer from defoliation, can tolerate high densities of herbivores when all aspects of herbivores on ecosystems are taken into account. Our results further show that the positive effect of herbivores on plant growth via changes in soil properties is essential for plants to cope with a high grazing pressure. The strong effect of the soil legacy of reindeer grazing reveals that herbivores can have long‐lasting effects on plant productivity and ecosystem functioning after grazing has ceased.  相似文献   

8.
Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 mol·mol–1 or 700 mol·mol–1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.  相似文献   

9.
Japanese larch (Larix kaempferi) grows at a relatively high rate in northern Japan, even in serpentine soil. Serpentine soil has high concentrations of heavy metals (Ni, Cr), excessive Mg, and is nutrient deficient. These factors often suppress plant growth. We examined the mechanisms of Japanese larch’s tolerance to serpentine soil. We compared growth, photosynthetic capacity, and concentrations of elements in needles and roots between larch seedlings growing in serpentine soil and in nonserpentine (i.e., brown forest) soil. Dry mass of needles, stems, and branches were lower in seedlings grown on serpentine soil than in those grown on brown forest soil. There were lower concentrations of phosphorus and potassium in seedlings grown on serpentine soil than in those grown on brown forest soil. Seedlings growing on serpentine soil had lower Ni in plant organs. Our results suggest that larch seedlings grown on serpentine soil were able to exclude toxic elements. Moreover, the photosynthetic capacity and nitrogen concentration in needles was almost the same for seedlings grown in the two soil types. A wide range in growth was observed among individuals grown on both soil types. This may be regulated by nitrogen storage in the roots.  相似文献   

10.
During the past 25 Myr, partial pressures of atmospheric CO2 (Ca) imposed a greater limitation on C3 than C4 photosynthesis. This could have important downstream consequences for plant nitrogen economy and biomass allocation. Here, we report the first phylogenetically controlled comparison of the integrated effects of subambient Ca on photosynthesis, growth and nitrogen allocation patterns, comparing the C3 and C4 subspecies of Alloteropsis semialata. Plant size decreased more in the C3 than C4 subspecies at low Ca, but nitrogen pool sizes were unchanged, and nitrogen concentrations increased across all plant partitions. The C3, but not C4 subspecies, preferentially allocated biomass to leaves and increased specific leaf area at low Ca. In the C3 subspecies, increased leaf nitrogen was linked to photosynthetic acclimation at the interglacial Ca, mediated via higher photosynthetic capacity combined with greater stomatal conductance. Glacial Ca further increased the biochemical acclimation and nitrogen concentrations in the C3 subspecies, but these were insufficient to maintain photosynthetic rates. In contrast, the C4 subspecies maintained photosynthetic rates, nitrogen‐ and water‐use efficiencies and plant biomass at interglacial and glacial Ca with minimal physiological adjustment. At low Ca, the C4 carbon‐concentrating mechanism therefore offered a significant advantage over the C3 type for carbon acquisition at the whole‐plant scale, apparently mediated via nitrogen economy and water loss. A limiting nutrient supply damped the biomass responses to Ca and increased the C4 advantage across all Ca treatments. Findings highlight the importance of considering leaf responses in the context of the whole plant, and show that carbon limitation may be offset at the expense of greater plant demand for soil resources such as nitrogen and water. Results show that the combined effects of low CO2 and resource limitation benefit C4 plants over C3 plants in glacial–interglacial environments, but that this advantage is lessened under anthropogenic conditions.  相似文献   

11.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

12.
Abstract Small birch plants (Betula pendula Roth) were grown in a climate chamber at different levels of nutrient availability and at two photon flux densities. The extent to which starch storage was dependent upon nutrient availability and photon flux density was investigated. Acclimated values of starch concentration in leaves were highest at low nutrient availability and high photon flux density. Starch storage in roots was only found at the lowest nutrient availability. However, the relative rate of starch storage (starch stored per unit plant dry weight and time) was higher in plants with good nutrition. The data suggest that, at sub-optimal nutrient availability, the momentary rate of net shoot photosynthesis is unlikely to limit the structural (as opposed to carbon storage) growth of the plant. Although photosynthetic rate per unit leaf area (as measured at the growth climate) was slightly lower in plants with poor nutrient availability, photosynthetic rate per unit leaf nitrogen was higher. These data suggest a priority of leaf nitrogen usage in photosynthesis, with limiting amounts of leaf nitrogen (and possibly other nutrients) for subsequent growth processes. This argument is consistent with the higher concentrations of starch found in plants with poor nutrient availability.  相似文献   

13.
Summary Canopy development and photosynthetic rate were measured at monthly intervals over a period of one year in 19 shrub and subshrub species of the Mojave and upper Sonoran Deserts. Thirteen of these species realized a substantial fraction of their total net carbon assimilation via twig photosynthesis. The twig contribution to whole plant yearly carbon gain reached a maximum of 83% in species such as Thamnosma montana, Salizaria mexicana, and Baccharis brachyphylla. This large contribution by twigs was due to both low levels of leaf production and the greater longevity of twig tissues. In some other species, however, leaf and twig organs had similar lifespans. During the year of this study (which had an unusually warm, mild winter), no species showed a pattern of winter deciduousness. The reduction in total photosynthetic area between maximal spring canopy development and mid August summer dormancy ranged from 32 to 94%. Some herbaceous perennial species died back to the ground, but none of the woody shrubs were totally without green canopy area at any time of the year. No species studied were capable of high rates of photosynthesis at low plant water potentials in July and August, but, in those species which maintained a substantial canopy area through the drought period, previously stressed tissues showed substantial recovery after fall rains. Photosynthetic rate was significantly correlated with both plant water potential and tissue nitrogen content over the entire year, but only weakly so. This is due in part to the winter months when plant water potentials and tissue nitrogen contents were high, but photosynthetic rates were often low.  相似文献   

14.
The growth of two provenances of Pinus sylvestris L. were compared with two provenances of Picea abies (L.) Karst. and with Pinus contorta Dougl. when grown in solution cultures with low nutrient concentrations. Nitrogen was added at different exponentially increasing rates, and the other nutrients were added at a rate high enough to ensure free access of them to the seedlings. During an initial period of the culture (a lag phase), when the internal nutrient status was changing from optimum to the level of the treatment, deficiency symptoms appeared. The needles yellowed and the root/shoot ratio increased. The initial phase was followed by a period of exponential growth and steady-state nutrition. The needles turned green again, and the root/shoot ratio stabilized at a level characteristic of the treatment. These patterns were the same as previously reported for other tree species. The relative growth rate during exponential growth was numerically closely equal to the relative nitrogen addition rate. The maximum relative growth rates were about 6 to 7.5% dry weight increase day-1. This is a much lower maximum than for broad-leaved species (about 20 to 30% day-1) under similar growth conditions. The internal nitrogen concentrations of the seedlings and the relative growth rates were stable during the exponential period. Close linear relationships were found between these parameters and the relative addition rate up to maximum growth. During steady state the relative growth rates of the different plant parts were equal. However, there were large differences between genotypes in absolute root growth rate at the same seedling size because of differences in root/shoot ratio. Lodgepole pine had the highest root growth rate, whereas that of Norway spruce, especially the southern provenance, was remarkably low. Yet, Norway spruce had a high ability to utilize available nutrients. In treatments with free nutrient access, growth allocation to the shoot had a high priority in all genotypes, but there was still a marked tendency for luxury uptake of nutrients. Nitrogen productivity (growth rate per unit of nitrogen) was lower than in broadleaved species and highest in lodgepole pine. The relevance of the dynamic factors, i.e. maximum relative growth rate, nutrient uptake rate, nitrogen productivity, growth allocation and root growth rate, are discussed with regard to conifer characteristics and selection value.  相似文献   

15.
Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant–soil nutrient concentrations. We conducted a meta‐analysis of 215 peer‐reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient‐poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant–soil elemental composition and stoichiometry.  相似文献   

16.
Previous studies have indicated that Populus cathayana Rehder females are more sensitive and less tolerant to stressful environments than males, but it is still unknown whether there are sexual differences in defensive and protective traits under high UV‐B (HUVB) radiation and low soil nutrient status. In this study, P. cathayana was employed as a model species to investigate sex‐related physiological and biochemical responses to UV‐B radiation under different soil nutrient conditions. Cuttings were exposed to two UV‐B radiation regimes (ambient UV‐B radiation and decreased UV‐B radiation) under two soil nutrient status (topsoil and deep soil) for 100 days over one growing season. Both HUVB radiation and low soil nutrient status induced greater decreases in plant growth, dry mass accumulation, gas exchange and leaf nitrogen use efficiency in females than in males, and greater increases in lipid peroxide and antioxidant enzyme activities, and secondary defense capacities in males than in females. Moreover, sexually different responses happened also in organelle ultrastructure. Our results showed that: (1) females suffered greater negative effects and exhibited lower defense capacities than did males under HUVB radiation, low soil nutrient status and their combination; (2) low soil nutrient status reduced plant's sensitivity to HUVB radiation by increasing allocation to defense and decreasing allocation to growth compared with high soil nutrient status. These results provide evidence that sexually different tradeoffs happen between growth and defense in P. cathayana under HUVB radiation and low soil nutrient status.  相似文献   

17.
In arctic tundra soil, oxygen depletion associated with soil flooding may control plant growth either directly through anoxia or indirectly through effects on nutrient availability. This study was designed to evaluate whether plant growth and physiology of two arctic sedge species are more strongly controlled by the direct or indirect effects of decreased soil aeration. Eriophorum angustifolium and E. vaginatum, which originate from flooded and well-drained habitats, respectively, were grown in an in situ transplant garden at two levels of soil oxygen, nitrogen, and phosphorus availability over two growing seasons. In both species, N addition had a stronger effect on growth and biomass allocation than P addition or soil oxygen depletion. Net photosynthesis and carbohydrate concentrations were relatively insensitive to changes in these factors. Biomass reallocated from shoots to below-ground parts in response to limited N supply was equally divided between roots (nutrient acquisition) and perennating rhizomes (storage tissue formation) in E. angustifolium. E. Vaginatum only increased its allocation to rhizomes. In the flood-tolerant E. angustifolium, growth was improved by soil anoxia and biomass allocation among plant parts was not significantly affected. Contrary to our initial hypothesis, whole-plant growth in E. vaginatum improved in flooded soils; however, it only did so when N availability was high. Under low N availability growth in flooded soils was reduced by 20% compared to growth in the aerobic environment. Reduced biomass allocation to rhizomes and thus to storage potential under anaerobic conditions may reduce long-term survival of E. vaginatum in flooded habitats.  相似文献   

18.
Summary A comparative study of blade photosynthesis and nitrogen use efficiency was made on the dune grasses Ammophila arenaria and Elymus mollis. In the laboratory, an open system gas analysis apparatus was used to examine the gas exchange characteristics of blades as influenced by nitrogen supply. Plants were grown under near-ambient coastal conditions in a greenhouse near Bodega Bay, California, and given either high or low supplies of nitrogen in an otherwise complete nutrient solution. In the field, 14CO2 uptake techniques were employed to measure the seasonal patterns of blade photosynthesis of plants growing in situ at Point Reyes National Seashore. Blades used in the lab and field studies were analyzed for total nitrogen content, thus allowing for calculations of photosynthetic nitrogen use efficiency (CO2 fixed/unit of blade N.).Under laboratory conditions, the introduced Ammophila developed higher rates of light-saturated photosynthesis than the native Elymus, especially under the nitrogenlimited growth regime. Higher rates of photosynthesis and lower concentrations of blade N resulted in a significantly greater nitrogen use efficiency for Ammophila regardless of nutrient treatment. Low N availability induced qualitatively similar physiological responses in both species, including reductions in maximum net photosynthesis, mesophyll conductance, leaf conductance, dark respiration, and blade nitrogen content, and an increase in the CO2 compensation point.Although the photosynthetic rates of Ammophila blades were higher in the lab, those of Elymus blades were consistently higher in the field. This could have resulted from differential effects of drought on the two species (i.e. Ammophila may have been more sensitive) or a higher photosynthetic capacity in Elymus that reflected the greater (1.2–1.5 X) nitrogen content of its blades. However, the nitrogen use efficiency of Ammophila blades was greater than that of Elymus throughout most of the sampling year, despite lower average rates of field photosynthesis.The results indicated that rates of photosynthesis perunit of blade area do not account for the greater aboveground productivity of Ammophila stands along the Pacific coast of North America. Instead, efficient nitrogen use in photosynthesis maycomplement other structural and physiological traits and thereby enhance long-term carbon gain in Ammophila relative to Elymus.  相似文献   

19.
Summary The purpose of this study was to investigate various growth parameters, dry matter and nitrogen, phosphorus and potassium allocation and photosynthesis ofCarex acutiformis, C. rostrata andC. diandra growing in fens with, in this order, decreasing nutrient availability and decreasing aboveground productivity. Plants were grown from cuttings at optimum nutrient conditions in a growth chamber. Growth analysis at sequential harvests revealed that the species had no inherently different relative growth rates which could explain their different productivity, but that their LAR (LWR and SLA) decreased in the orderC. acutiformis, C. rostrata, C. diandra and their NAR increased in this order. All growth parameters decreased during plant growth even under the controlled conditions of the experiment.C. acutiformis allocated relatively much dry matter to the leaves,C. rostrata to the rhizomes andC. diandra to the roots. This may, in part, explain the higher aboveground biomass production ofC. acutiformis in the field. Nitrogen, but not phosphorus and potassium, allocation patterns were different for the three species.C. diandra, the species from the nitrogen-poorest site, had the highest leaf N content of the three species and also a higher chlorophyll content. Related to this, this species had the highest photosynthetic activity of whole plants both when collected from the field and when grown in the growth chamber. The nitrogen productivity was similar for the three species and the photosynthetic nitrogen use efficiency, determined forC. acutiformis andC. diandra, was similar for these two species.C. diandra had the most finely branched root system, i.e., the highest specific root length of the three species and its root surface area to leaf surface area ratio was also the highest. All three species showed higher nitrate reductase activity in the leaves than in the roots when grown on nutrient solution. The growth ofC. diandra at a relatively nutrient-poor site and a rather open low vegetation is assumed to be adapted to its habitat by a relatively high NAR made possible by a high rate of photosynthesis concurrent with a high leaf N content. The growth ofC. acutiformis at a relatively nutrient-rich site and a more dense and higher vegetation is adapted to its habitat by a high LAR.  相似文献   

20.
A suite of functionally-related characters and demography of three species of Neotropical shadeadapted understory shrubs (Psychotria, Rubiaceae) were studied in the field over five years. Plants were growing in large-scale irrigated and control treatments in gaps and shade in old-growth moist forest at Barro Colorado Island, Panama. Irrigation demonstrated that dry-season drought limited stomatal conductance, light saturated photosynthesis, and leaf longevity in all three species. Drought increased mortality of P. furcata. In contrast, irrigation did not affect measures of photosynthetic capacity determined with an oxygen electrode or from photosynthesis-CO2 response curves in the field. Drought stress limited field photosynthesis and leaf and plant survivorship without affecting photosynthetic capacity during late dry season. Leaves grown in high light in naturally occurring treefall gaps had higher photosynthetic capacity, dark respiration and mass per unit area than leaves grown in the shaded understory. P. furcata had the lowest acclimation to high light for all of these characters, and plant mortality was greater in gaps than in shaded understory for this species. The higher photosynthetic capacity of gap-grown leaves was also apparent when photosynthetic capacity was calculated on a leaf mass basis. Acclimation to high light involved repackaging (higher mass per unit leaf area) as well as higher photosynthetic capacity per unit leaf mass in these species. The three species showed two distinct syndromes of functionally-related adaptations to low light. P. limonensis and P. marginata had high leaf longevity (3 years), high plant survivorship, low leaf nitrogen content, and high leaf mass per unit area. In contrast, P. furcata had low leaf survivorship (1 year), high plant mortality (77–96% in 39 months), low leaf mass per unit area, high leaf nitrogen content, and the highest leaf area to total plant mass; the lowest levels of shelf shading, dark respiration and light compensation; and the highest stem diameter growth rates. This suite of characters may permit higher whole-plant carbon gain and high leaf and population turnover in P. furcata. Growth in deep shade can be accomplished through alternative character syndromes, and leaf longevity may not be correlated with photosynthetic capacity in shade adapted plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号