首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant‐invasive success is one of the most important current global changes in the biosphere. To understand which factors explain such success, we compared the foliar traits of 41 native and 47 alien‐invasive plant species in Oahu Island (Hawaii), a location with a highly endemic flora that has evolved in isolation and is currently vulnerable to invasions by exotic plant species. Foliar traits, which in most cases presented significant phylogenetic signal, i.e. closely related species tended to resemble each other due to shared ancestry, separated invasive from native species. Invasive species had lower leaf mass per area and enhanced capacities in terms of productivity (photosynthetic capacity) and nutrient capture both of macro‐ (N, P, K) and microelements (Fe, Ni, Cu and Zn). All these differences remain highly significant after removing the effects of phylogenetic history. Alien‐invasive species did not show higher efficiency at using limiting nutrient resources, but they got faster leaf economics returns and occupied a different biogeochemical niche, which helps to explain the success of invasive plants and suggests that potential increases in soil nutrient availability might favor further invasive plant success.  相似文献   

2.
Invasive plants are often associated with greater productivity and soil nutrient availabilities, but whether invasive plants with dissimilar traits change decomposer communities and decomposition rates in consistent ways is little known. We compared decomposition rates and the fungal and bacterial communities associated with the litter of three problematic invaders in intermountain grasslands; cheatgrass (Bromus tectorum), spotted knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula), as well as the native bluebunch wheatgrass (Pseudoroegneria spicata). Shoot and root litter from each plant was placed in cheatgrass, spotted knapweed, and leafy spurge invasions as well as remnant native communities in a fully reciprocal design for 6 months to see whether decomposer communities were species‐specific, and whether litter decomposed fastest when placed in a community composed of its own species (referred to hereafter as home‐field advantage–HFA). Overall, litter from the two invasive forbs, spotted knapweed and leafy spurge, decomposed faster than the native and invasive grasses, regardless of the plant community of incubation. Thus, we found no evidence of HFA. T‐RFLP profiles indicated that both fungal and bacterial communities differed between roots and shoots and among plant species, and that fungal communities also differed among plant community types. Synthesis. These results show that litter from three common invaders to intermountain grasslands decomposes at different rates and cultures microbial communities that are species‐specific, widespread, and persistent through the dramatic shifts in plant communities associated with invasions.  相似文献   

3.
Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi‐species test examining performance and herbivory of invasive alien, non‐invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non‐invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non‐invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non‐invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non‐invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.  相似文献   

4.
We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species ( P  = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species ( P  = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.  相似文献   

5.
Non‐native invasive plants can greatly alter community and ecosystem properties, but efforts to predict which invasive species have the greatest impacts on these properties have been generally unsuccessful. An hypothesis that has considerable promise for predicting the effects of invasive non‐native plant species is the mass ratio hypothesis (i.e. that dominant species exert the strongest effects). We tested this hypothesis using data from a four year removal experiment in which the presence of two dominant shrub species (one native and the other not), and subordinate plant species, were manipulated in factorial combinations over four years in a primary successional floodplain system. We measured the effects of these manipulations on the plant community, soil nutrient status and soil biota in different trophic levels of the soil food web. Our experiment showed that after four years, low‐biomass non‐native plant species exerted disproportionate belowground effects relative to their contribution to total biomass in the plant community, most notably by increasing soil C, soil microbial biomass, altering soil microbial community structure and increasing the abundance of microbial‐feeding and predatory nematodes. Low‐biomass, non‐native plant species had distinct life history strategies and foliar traits (higher foliar N concentrations and higher leaf area per unit mass) compared with the two dominant shrub species (97% of total plant mass). Our results have several implications for understanding species’ effects in communities and on soil properties. First, high‐biomass species do not necessarily exert the largest impacts on community or soil properties. Second, low‐biomass, inconspicuous non‐native species can influence community composition and have important trophic consequences belowground through effects on soil nutrient status or resource availability to soil biota. Our finding that low‐biomass non‐native species influence belowground community structure and soil properties more profoundly than dominant species demonstrates that the mass ratio hypothesis does not accurately predict the relative effects of different coexisting species on community‐ and ecosystem‐level properties.  相似文献   

6.
Invasive plant species alter plant community composition and ecosystem function. In the United States, California native grasslands have been displaced almost completely by invasive annual grasses, with serpentine grasslands being one of the few remaining refugia for California grasslands. This study examined how the invasive annual grass, Aegilops triuncialis, has altered decomposition processes in a serpentine annual grassland. Our objectives were to (1) assess howA. triuncialis alters primary productivity and litter tissue chemistry, (2) determine whether A. triuncialis litter is more recalcitrant to decomposition than native litter, and (3) evaluate whether differences in the soil microbial community in A. triuncialis-invaded and native-dominated areas result in different decomposition rates of invasive and/or native plant litter. In invaded plant patches, A. triuncialis was approximately 50% of the total plant cover, in contrast to native plant patches in which A. triuncialis was not detected and native plants comprised over 90% of the total plant cover. End-of-season aboveground biomass was 2-fold higher in A. triuncialis dominated plots compared to native plots; however, there was no significant difference in belowground biomass. Both above- and below-ground plant litter from A. triuncialis plots had significantly higher lignin:N and C:N ratios and lower total N, P, and K than litter from native plant plots. Aboveground litter from native plots decomposed more rapidly than litter from A. triuncialis plots, although there was no difference in decomposition of belowground tissues. Soil microbial community composition associated with different soil patch types had no effect on decomposition rates. These data suggest that plant invasion impacts decomposition and nutrient cycling through changes in plant community tissue chemistry and biomass production.  相似文献   

7.
The roles of photosynthesis‐related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient‐poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light‐saturated photosynthetic rate (Pmax) between 22 invasive and native plants in a nutrient‐poor habitat in northeast China. The invasive plants had significantly higher Pmax, photosynthetic nitrogen‐ (PNUE), phosphorus‐ (PPUE), potassium‐ (PKUE) and energy‐use efficiencies (PEUE) than the co‐occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax, PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource‐use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.  相似文献   

8.
Invasive plants affect soil biota through litter and rhizosphere inputs, but the direction and magnitude of these effects are variable. We conducted a meta‐analysis to examine the different effects of litter and rhizosphere of invasive plants on soil communities and nutrient cycling. Our results showed that invasive plants increased bacterial biomass by 16%, detritivore abundance by 119% and microbivore abundance by 89% through litter pathway. In the rhizosphere, invasive plants reduced bacterial biomass by 12%, herbivore abundance by 55% and predator abundance by 52%, but increased AM fungal biomass by 36%. Moreover, CO2 efflux, N mineralisation rate and enzyme activities were all higher in invasive than native rhizosphere soils. These findings indicate that invasive plants may support more decomposers that in turn stimulate nutrient release via litter effect, and enhance nutrient uptake by reducing root grazing but forming more symbioses in the rhizosphere. Thus, we hypothesise that litter‐ and root‐based loops are probably linked to generate positive feedback of invaders on soil systems through stimulating nutrient cycling, consequently facilitating plant invasion. Our findings from limited cases with diverse contexts suggest that more studies are needed to differentiate litter and rhizosphere effects within single systems to better understand invasive plant‐soil interactions.  相似文献   

9.
Abstract Exotic plant invasions are a significant problem in urban bushland in Sydney, Australia. In low‐nutrient Hawkesbury Sandstone communities, invasive plants are often associated with urban run‐off and subsequent increases in soil nutrients, particularly phosphorus. Fire is an important aspect of community dynamics in Sydney vegetation, and is sometimes used in bush regeneration projects as a tool for weed control. This study addressed the question: ‘Are there differences in post‐fire resprouting and germination of native and exotic species in nutrient‐enriched communities, compared with communities not disturbed by nutrient enrichment?’ We found that in non‐enriched areas, few exotic species emerged, and those that did were unable to achieve the rapid growth that was seen in exotic plants in the nutrient‐enriched areas. Therefore, fire did not promote the invasion of exotic plants into areas that were not nutrient‐enriched. In nutrient‐enriched areas after fire, the diversity of native species was lower than in the non‐enriched areas. Some native species were able to survive and compete with the exotic species in terms of abundance, per cent cover and plant height. However, these successful species were a different suite of natives to those commonly found in the non‐enriched areas. We suggest that although fire can be a useful tool for short‐term removal of exotic plant biomass from nutrient‐enriched areas, it does not promote establishment of native species that were not already present.  相似文献   

10.
? Premise of study: Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments. ? Methods: We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use efficiency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use efficiency. ? Key results: Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic. ? Conclusions: Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability.  相似文献   

11.
入侵植物繁殖性状的研究可为揭示植物入侵机制提供重要的科学依据。为研究土壤养分对入侵植物和本地植物繁殖性状的影响, 并进一步研究养分添加是否更能促进入侵植物的繁殖能力, 我们设置了低、高两个养分水平, 通过同质园实验比较了不同土壤养分对假臭草(Praxelis clematidea)、胜红蓟(Ageratum conyzoides)、三叶鬼针草(Bidens pilosa) 3种菊科一年生入侵种和夜香牛(Vernonia cinerea)、一点红(Emilia sonchifolia)、墨旱莲(Eclipta prostrata) 3种本地种繁殖性状的影响。研究结果显示, 养分添加提高了6种菊科植物的开花株高、株高、地上生物量、单粒种子重量、总花序数、每花序种子数、总种子数量、总种子重量, 并使开花时间提前、花期延长。养分添加对入侵种的开花株高和单粒种子重量的提高幅度要比本地种更显著。相对于部分本地植物(夜香牛、墨旱莲), 养分添加更能促进部分入侵植物(假臭草、胜红蓟)的繁殖能力。三叶鬼针草和一点红的总种子数量和总种子重量在两种土壤养分水平下均较小。本地种墨旱莲的总种子数量和总种子重量在低养分条件下高于3个入侵种。这些结果表明, 高土壤养分仅能促进部分入侵植物相对于部分本地植物的繁殖能力。  相似文献   

12.
Invasion by exotic plants is often associated with nutrient enrichment of soils, particularly on soils of naturally low fertility. As a consequence, it is likely that the outcome of competitive interactions between native and invasive plants may be mediated by soil nutrient availability. We independently investigated competitive effect and response as well as the occurrence of asymmetric competition among native and invasive plants on soils of varying nutrient availability, using a glasshouse experiment. Seedlings of eight co‐occurring pairs of invasive and native species from low fertility Hawkesbury Sandstone‐derived soil were grown under low and high nutrient availability. We tested the hypotheses that native species would be competitively superior at low nutrient availability and have trait values associated with a resource conservation strategy while invasive species would be competitively superior at high nutrient availability and have trait values associated with a resource acquisition strategy. We found that nutrient availability did not mediate competitive interactions between invasive and native species. Instead, two invasive and one native species were always competitively superior irrespective of nutrient availability. Competitively superior species displayed a mixture of both resource conservation and acquisition strategies at low and high nutrient availability. In support of previous studies, we found that the a priori classification of invasive and native species does not predict competitive superiority at varying nutrient levels. Rather, species specific differences in trait values provide a competitive advantage in response to nutrient availability.  相似文献   

13.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

14.
了解外来植物入侵对本土植物群落种群动态的影响对于植物入侵的防控极为重要。该文以加拿大一枝黄花(Solidago canadensis)入侵不同阶段的植物群落为研究对象, 对本土植物物种多样性以及常见优势种群的生态位变化进行了定量分析。结果表明: 加拿大一枝黄花氮素积累能力高于其他本土优势种群。随着加拿大一枝黄花入侵的深入, 本土植物群落的物种多样性呈现显著下降趋势; 氮素积累能力高的本土优势种群生态位宽度呈现明显的上升趋势, 而氮素积累能力低的本土优势种群生态位宽度则呈现明显下降的趋势; 本土优势种群的生态位重叠平均值呈现逐步下降的趋势。加拿大一枝黄花的入侵, 显著提高了土壤硝态氮含量, 而土壤铵态氮、有效磷、全磷和全氮含量显著降低。对氮素的积累能力决定了加拿大一枝黄花入侵后, 本土植物种群的动态变化格局。  相似文献   

15.
? Exotic plant invasions can alter ecosystem processes, particularly if the invasive species are functionally different from native species. We investigated whether such alterations can be explained by differences in functional traits between native and invasive plants of the same functional group or by differences in functional group affiliation. ? We compared six invasive forbs in Europe with six native forbs and six native graminoids in leaf and whole-plant traits, plasticity in response to nutrient supply and interspecific competition, litter decomposition rate, effects on soil nutrient availability, and allelopathy. All traits were measured in a series of pot experiments, and leaf traits additionally in the field. ? Invasive forbs differed from native forbs for only a few traits; they had less leaf chlorophyll and lower phosphorus (P) uptake from soil, but they tended to have a stronger allelopathic effect. The invasive forbs differed in many traits from the native graminoids, their leaves had lower tissue densities and a shorter life span, their litter decomposed faster and they had a lower nitrogen-use efficiency. ? Our results suggest that invasive forbs have the potential to alter ecosystem properties when invading graminoid-dominated and displacing native graminoids but not when displacing native forbs.  相似文献   

16.
Variation in nitrogen and phosphorus concentrations of wetland plants   总被引:11,自引:0,他引:11  
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.  相似文献   

17.
The increasing success of invasive plant species in wetland areas can threaten their capacity to store carbon, nitrogen, and phosphorus (C, N, and P). Here, we have investigated the relationships between the different stocks of soil organic carbon (SOC), and total C, N, and P pools in the plant–soil system from eight different wetland areas across the South‐East coast of China, where the invasive tallgrass Spartina alterniflora has replaced the native tall grasses Phragmites australis and the mangrove communities, originally dominated by the native species Kandelia obovata and Avicennia marina. The invasive success of Spartina alterniflora replacing Phragmites australis did not greatly influence soil traits, biomass accumulation or plant–soil C and N storing capacity. However, the resulting higher ability to store P in both soil and standing plant biomass (approximately more than 70 and 15 kg P by ha, respectively) in the invasive than in the native tall grass communities suggesting the possibility of a decrease in the ecosystem N:P ratio with future consequences to below‐ and aboveground trophic chains. The results also showed that a future advance in the native mangrove replacement by Spartina alterniflora could constitute a serious environmental problem. This includes enrichment of sand in the soil, with the consequent loss of nutrient retention capacity, as well as a sharp decrease in the stocks of C (2.6 and 2.2 t C ha‐1 in soil and stand biomass, respectively), N, and P in the plant–soil system. This should be associated with a worsening of the water quality by aggravating potential eutrophication processes. Moreover, the loss of carbon and nutrient decreases the potential overall fertility of the system, strongly hampering the reestablishment of woody mangrove communities in the future.  相似文献   

18.
1. The lack of consistent differences between the traits of native and non‐native plant species makes it difficult to make general predictions about the ecological impact of invasive plants; however, the increasing number of non‐native plants in many habitats makes the assessment of the impact of each individual species impracticable. General knowledge about how specific plant traits are linked to their effects on communities or ecosystems may be more useful for predicting the effect of plant invasions. Specifically, we hypothesised that higher carbon‐to‐nitrogen ratio (C:N) and percent lignin in plant detritus would reduce the rate of development and total mass at metamorphosis of tadpoles, resulting in lower metamorph production (total fresh biomass) and amphibian species richness. 2. To test these hypotheses, we raised five species of tadpoles in mesocosms containing senescent leaves of three common native and three common non‐native wetland plants that varied in C:N ratio and % lignin. 3. Leaf mass loss, total metamorph production and the number of species that metamorphosed declined as a function of increasing C:N ratio of plant leaves. Plant lignin content was not related to the production of metamorphs or the number of species that metamorphosed. The percentage of wood frog (Lithobates sylvaticus) and American toad (Anaxyrus americanus) tadpoles reaching metamorphosis declined as a function of increasing plant C:N ratio. Mean time to metamorphosis increased and mean mass at metamorphosis declined as a function of increasing plant C:N ratio. Tadpole performance and metamorph diversity and production (biomass) were similar between native and non‐native plant species with similar C:N ratio in leaves. Percent lignin was not a significant predictor of tadpole performance. 4. Our results show that the impact of a plant invasion on tadpole performance could depend on differences between the quality of the detritus produced by the invading species and that of the native species it replaces. We suggest that plant community changes that lead to dominance by more recalcitrant plant species (those with higher leaf C:N ratio) may negatively affect amphibian populations.  相似文献   

19.
Non‐native plant invasions can alter nutrient cycling processes and contribute to global climate change. In southern California, California sage scrub (hereafter sage scrub), a native shrub‐dominated habitat type in lowland areas, has decreased to <10% of its original distribution. Postdisturbance type‐conversion to non‐native annual grassland, and increasingly to mustard‐dominated invasive forbland, is a key contributor to sage scrub loss. To better understand how type‐conversion by common invasive annuals impacts carbon (C) and nitrogen (N) storage in surface soils, we examined how the identity of the invader (non‐native grasses, Bromus spp.; and non‐native forbs, Brassica nigra), microbial concentrations, and soil properties interact to influence soil nutrient storage in adjacent native and invasive habitat types at nine sites along a coast to inland gradient. We found that the impact of type‐conversion on nutrient storage was contingent upon the invasive plant type. Sage scrub soils stored more C and N than non‐native grasslands, whereas non‐native forblands had nutrient storage similar to or higher than sage scrub. We calculate that >940 t C km?2 and >60 t N km?2 are lost when sage scrub converts to grass‐dominated habitat, demonstrating that grass invasions are significant regional contributors to greenhouse gas emissions. We found that sites with greater total C and N storage were associated with high cation exchange capacities and bacterial concentrations. Non‐native grassland habitat type was a predictor of lower total C, and soil pH, which was greatest in invasive habitats, was a predictor of lower total N. We demonstrate that modeling regional nutrient storage requires accurate classification of habitat type and fine‐scale quantification of cation exchange capacity, pH, and bacterial abundance. Our results provide evidence that efforts to restore and conserve sage scrub enhance nutrient storage, a key ecosystem service reducing atmospheric CO2 concentrations.  相似文献   

20.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号